Automated lesion detection of breast cancer in [F] FDG PET/CT using a novel AI-Based workflow.
Authors
Leal, Jeffrey PRowe, Steven P
Stearns, Vered
Connolly, Roisin M
Vaklavas, Christos
Liu, Minetta C
Storniolo, Anna Maria
Wahl, Richard L
Pomper, Martin G
Solnes, Lilja B
Issue Date
2022-11-15Keywords
PERCIST v1.0Artificial intelligence
BREAST CANCER
Deep learning
Machine learning
Metadata
Show full item recordJournal
Frontiers in oncologyDOI
10.3389/fonc.2022.1007874PubMed ID
36457510Item Type
ArticleLanguage
enISSN
2234-943Xae974a485f413a2113503eed53cd6c53
10.3389/fonc.2022.1007874
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Copyright © 2022 Leal, Rowe, Stearns, Connolly, Vaklavas, Liu, Storniolo, Wahl, Pomper and Solnes.
Related articles
- Just another "Clever Hans"? Neural networks and FDG PET-CT to predict the outcome of patients with breast cancer.
- Authors: Weber M, Kersting D, Umutlu L, Schäfers M, Rischpler C, Fendler WP, Buvat I, Herrmann K, Seifert R
- Issue date: 2021 Sep
- AI-based detection of lung lesions in [(18)F]FDG PET-CT from lung cancer patients.
- Authors: Borrelli P, Ly J, Kaboteh R, Ulén J, Enqvist O, Trägårdh E, Edenbrandt L
- Issue date: 2021 Mar 25
- More advantages in detecting bone and soft tissue metastases from prostate cancer using (18)F-PSMA PET/CT.
- Authors: Pianou NK, Stavrou PZ, Vlontzou E, Rondogianni P, Exarhos DN, Datseris IE
- Issue date: 2019 Jan-Apr
- (18)F-FDG PET/CT Uptake Classification in Lymphoma and Lung Cancer by Using Deep Convolutional Neural Networks.
- Authors: Sibille L, Seifert R, Avramovic N, Vehren T, Spottiswoode B, Zuehlsdorff S, Schäfers M
- Issue date: 2020 Feb
- The impact of introducing deep learning based [(18)F]FDG PET denoising on EORTC and PERCIST therapeutic response assessments in digital PET/CT.
- Authors: Weyts K, Lequesne J, Johnson A, Curcio H, Parzy A, Coquan E, Lasnon C
- Issue date: 2024 Aug 10