[Evidence summary:] What is the evidence of a relationship between socio-economic deprivation and the increased risk, if any, of infection with or death from COVID-19? Are there additional factors such as ethnicity, demography or population density which may amplify or modify the impact of deprivation on COVID-19 risk? [v1.0]
dc.contributor.author | National Health Library & Knowledge Service (NHLKS) | |
dc.date.accessioned | 2022-05-09T16:33:28Z | |
dc.date.available | 2022-05-09T16:33:28Z | |
dc.date.issued | 2020-09-15 | |
dc.identifier.uri | http://hdl.handle.net/10147/631878 | |
dc.description | The effects of COVID-19 on the health of racial and ethnic minority groups is still emerging. Most of the published, peer-reviewed research looks at UK South Asian and black and African American populations. Bhala et al7 support socio-economic and environmental rather than biological factors in explaining how COVID-19 disproportionally affects ethnical/racial minority groups. Routine, large-scale data on the risk factors and potential underlying causes of COVID-19 complications for ethnic/racial minorities are not yet available globally. Their opinion is supported by Khalatbari-Soltani et al15 in their brief review of research studies. Their review shows that important socio-economic characteristics are being overlooked when data are collected and the authors emphasise the importance of collecting and reporting data on socio-economic determinants, as well as race/ethnicity, in order to identify high-risk populations. Based on their study undertaken on a cohort of hospitalised patients in the state of Georgia, Gold et al12 advise that public health officials ensure that prevention activities prioritise communities and racial/ethnic groups most affected by COVID-19. Khunti et al16 suggest that, in order to get a clearer picture of ethnic disparities in incidence and outcome in the UK, detailed national data reported by ethnic group are needed. They suggest this could be done through linking ethnicity data from Hospital Episode Statistics or Public Health England to mortality data from the Office of National Statistics. The authors list the various potential reasons for higher incidence and severity in minority groups, including socio-economic, cultural, genetic and possible ethnic differences in the expression of angiotensin converting enzyme 2, the host receptor for SARS-CoV-2. In a second study17, the authors reviewed published papers and national surveillance reports on notifications and outcomes of COVID-19 in order to ascertain ethnicity data reporting patterns, associations and outcomes. In emerging literature which is not yet peer-reviewed, two papers explore the risk of death in minority ethnic groups in England5 and the possible effect of lower irradiance on mortalityin the United States6. Another ecological study8 suggests that deprivation and pollution are not directly linked with COVID-19 mortality and that multivariate analyses are important to understand the factors that increase vulnerability to COVID-19. Buja et al9 looked at cases in Northern Italy and found a negative association between COVID-19 contagion rates and aging. The authors hypothesise that the reason could be that older people tend to move less outside their home and travel less far from where they live. In their analysis, higher levels of employment, public transportation usage, in-house density and population density correlated positively with the spread of infection. According to the authors, what these socio-economic factors have in common is the mobility of individuals and their exposure to close social contacts, both of which facilitate the propagation of COVID-19. In the United States, Chin et al10 created bivariate county-level maps to summarise examples of key relationships across biological, demographic and socio-economic factors, grouping age and poverty; comorbidities and lack of health insurance; proximity, density and bed capacity; and race and ethnicity, and premature death. According to the authors, their data demonstrate significant inter-county variation in key epidemiological risk factors, with a clustering of cases in counties in certain states which will result in an increased demand on their public health system. Guha et al13 utilised zip-code level data from five major metropolitan areas to study the effect of multiple demographic and socio-economic factors including race, age, income, chronic disease comorbidity, population density and the number of people per household on the number of positive cases and ensuing death. In their study, Mukherji et al19 uncover the socio-economic and health/lifestyle factors that can explain the differential impact of the coronavirus pandemic on different parts of the United States. Using a dynamic panel model with daily reported number of cases for US counties over a 20-day period, the study develops a Vulnerability Index for each county from an epidemiological model of disease spread. Still in the United States, Myers et al20 review increased health risks and documented health disparities of racial and ethnic minorities and low socio-economic situation individuals in the US. Samuels-Staple22 from the Florida Health Justice Project, looks at how Florida, one of just 14 states that has not expanded Medicaid, and with its diverse population, is uniquely susceptible to health disparities amid the COVID-19 crisis. Stojkoski et al24 investigate the potential of 35 determinants, leveraging Bayesian model averaging techniques and country level data, and describe a diverse set of socio-economic characteristics in explaining the coronavirus pandemic outcome. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Health Service Executive | en_US |
dc.subject | CORONAVIRUS | en_US |
dc.subject | COVID-19 | en_US |
dc.subject | SOCIAL EXCLUSION | en_US |
dc.subject | SOCIOENVIRONMENTAL FACTOR | en_US |
dc.title | [Evidence summary:] What is the evidence of a relationship between socio-economic deprivation and the increased risk, if any, of infection with or death from COVID-19? Are there additional factors such as ethnicity, demography or population density which may amplify or modify the impact of deprivation on COVID-19 risk? [v1.0] | en_US |
dc.type | Other | en_US |
refterms.dateFOA | 2022-05-09T16:33:29Z |
Files in this item
This item appears in the following Collection(s)
-
HSE Library Summaries of Evidence
Evidence summaries and reviews on the management and treatment of Novel Coronavirus Covid-19 and other clinical topics