The involvement of calcium and MAP kinase signaling pathways in the production of radiation-induced bystander effects.
Issue Date
2006-04Keywords
BYSTANDER EFFECTSRADIATION
NEOPLASMS
MeSH
Bystander EffectCalcium
Calcium Signaling
Cell Line
Dose-Response Relationship, Radiation
Humans
Keratinocytes
MAP Kinase Signaling System
Mitogen-Activated Protein Kinases
Radiation Dosage
Signal Transduction
Metadata
Show full item recordCitation
The involvement of calcium and MAP kinase signaling pathways in the production of radiation-induced bystander effects. 2006, 165 (4):400-9 Radiat. Res.Journal
Radiation researchPubMed ID
16579652Abstract
Much evidence now exists regarding radiation-induced bystander effects, but the mechanisms involved in the transduction of the signal are still unclear. The mitogen-activated protein kinase (MAPK) pathways have been linked to growth factor-mediated regulation of cellular events such as proliferation, senescence, differentiation and apoptosis. Activation of multiple MAPK pathways such as the ERK, JNK and p38 pathways have been shown to occur after exposure of cells to radiation and a variety of other toxic stresses. Previous studies have shown oxidative stress and calcium signaling to be important in radiation-induced bystander effects. The aim of the present study was to investigate MAPK signaling pathways in bystander cells exposed to irradiated cell conditioned medium (ICCM) and the role of oxidative metabolism and calcium signaling in the induction of bystander responses. Human keratinocytes (HPV-G cell line) were irradiated (0.005-5 Gy) using a cobalt-60 teletherapy unit. The medium was harvested 1 h postirradiation and transferred to recipient HPV-G cells. Phosphorylated forms of p38, JNK and ERK were studied by immunofluorescence 30 min-24 h after exposure to ICCM. Inhibitors of the ERK pathway (PD98059 and U0126), the JNK pathway (SP600125), and the p38 pathway (SB203580) were used to investigate whether bystander-induced cell death could be blocked. Cells were also incubated with ICCM in the presence of superoxide dismutase, catalase, EGTA, verapamil, nifedipine and thapsigargin to investigate whether bystander effects could be inhibited because of the known effects on calcium homeostasis. Activated forms of JNK and ERK proteins were observed after exposure to ICCM. Inhibition of the ERK pathway appeared to increase bystander-induced apoptosis, while inhibition of the JNK pathway appeared to decrease apoptosis. In addition, reactive oxygen species, such as superoxide and hydrogen peroxide, and calcium signaling were found to be important modulators of bystander responses. Further investigations of these signaling pathways may aid in the identification of novel therapeutic targets.Item Type
ArticleLanguage
enISSN
0033-7587Collections
Related articles
- Exosomes are involved in mediating radiation induced bystander signaling in human keratinocyte cells.
- Authors: Jella KK, Rani S, O'Driscoll L, McClean B, Byrne HJ, Lyng FM
- Issue date: 2014 Feb
- Reactive oxygen species and nitric oxide signaling in bystander cells.
- Authors: Jella KK, Moriarty R, McClean B, Byrne HJ, Lyng FM
- Issue date: 2018
- Signaling factors and pathways of α-particle irradiation induced bilateral bystander responses between Beas-2B and U937 cells.
- Authors: Fu J, Wang J, Wang X, Wang P, Xu J, Zhou C, Bai Y, Shao C
- Issue date: 2016 Jul
- Medium from irradiated cells induces dose-dependent mitochondrial changes and BCL2 responses in unirradiated human keratinocytes.
- Authors: Maguire P, Mothersill C, Seymour C, Lyng FM
- Issue date: 2005 Apr
- Dilution of irradiated cell conditioned medium and the bystander effect.
- Authors: Ryan LA, Smith RW, Seymour CB, Mothersill CE
- Issue date: 2008 Feb