• Login
    View Item 
    •   Home
    • Research Articles
    • Journal articles & published research
    • View Item
    •   Home
    • Research Articles
    • Journal articles & published research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Map of Submissions

    Home Page
    UlsterN
    4715
    UlsterS
    4715
    Connacht
    1603
    Munster
    48
    Leinster
    426

    Browse

    All of Lenus, The Irish Health RepositoryCommunitiesTitleAuthorsDate publishedSubjectsThis CollectionTitleAuthorsDate publishedSubjects

    My Account

    LoginRegister

    About

    About LenusDirectory of Open Access JournalsOpen Access Publishing GuideNational Health Library & Knowledge ServiceGuide to Publishers' PoliciesFAQsTerms and ConditionsVision StatementRIAN Pathways to Irish ResearchHSE position statement on Open AccessNational Open Research Forum (NORF)Zenodo (European Open Research repository)

    Statistics

    Display statistics

    Musculoskeletal modelling of muscle activation and applied external forces for the correction of scoliosis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    1743-0003-11-52.xml
    Size:
    90.04Kb
    Format:
    XML
    Download
    Thumbnail
    Name:
    1743-0003-11-52.pdf
    Size:
    3.143Mb
    Format:
    PDF
    Download
    View more filesView fewer files
    Authors
    Curtin, Maurice
    Lowery, Madeleine M
    Issue Date
    2014-04-07
    Keywords
    MUSCULOSKELETAL DISORDERS
    
    Metadata
    Show full item record
    Citation
    Journal of NeuroEngineering and Rehabilitation. 2014 Apr 07;11(1):52
    URI
    http://dx.doi.org/10.1186/1743-0003-11-52
    http://hdl.handle.net/10147/315818
    Abstract
    Abstract Background This study uses biomechanical modelling and computational optimization to investigate muscle activation in combination with applied external forces as a treatment for scoliosis. Bracing, which incorporates applied external forces, is the most popular non surgical treatment for scoliosis. Non surgical treatments which make use of muscle activation include electrical stimulation, postural control, and therapeutic exercises. Electrical stimulation has been largely dismissed as a viable treatment for scoliosis, although previous studies have suggested that it can potentially deliver similarly effective corrective forces to the spine as bracing. Methods The potential of muscle activation for scoliosis correction was investigated over different curvatures both with and without the addition of externally applied forces. The five King’s classifications of scoliosis were investigated over a range of Cobb angles. A biomechanical model of the spine was used to represent various scoliotic curvatures. Optimization was applied to the model to reduce the curves using combinations of both deep and superficial muscle activation and applied external forces. Results Simulating applied external forces in combination with muscle activation at low Cobb angles (< 20 degrees) over the 5 King’s classifications, it was possible to reduce the magnitude of the curve by up to 85% for classification 4, 75% for classifications 3 and 5, 65% for classification 2, and 60% for classification 1. The reduction in curvature was less at larger Cobb angles. For King’s classifications 1 and 2, the serratus, latissimus dorsi, and trapezius muscles were consistently recruited by the optimization algorithm for activation across all Cobb angles. When muscle activation and external forces were applied in combination, lower levels of muscle activation or less external force was required to reduce the curvature of the spine, when compared with either muscle activation or external force applied in isolation. Conclusions The results of this study suggest that activation of superficial and deep muscles may be effective in reducing spinal curvature at low Cobb angles when muscle groups are selected for activation based on the curve type. The findings further suggest the potential for a hybrid treatment involving combined muscle activation and applied external forces at larger Cobb angles.
    Language
    en
    Collections
    Journal articles & published research

    entitlement

     
    National Health Library & Knowledge Service | Health Service Executive | Dr Steevens' Hospital | Dublin 8 | Ireland
    lenus@hse.ie | Tel +353 (1) 6352558
    DSpace software copyright © 2002-2017  DuraSpace
    Contact Us | Disclaimer
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.