Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study.
dc.contributor.author | Mourao-Miranda, J | |
dc.contributor.author | Reinders, A A T S | |
dc.contributor.author | Rocha-Rego, V | |
dc.contributor.author | Lappin, J | |
dc.contributor.author | Rondina, J | |
dc.contributor.author | Morgan, C | |
dc.contributor.author | Morgan, K D | |
dc.contributor.author | Fearon, P | |
dc.contributor.author | Jones, P B | |
dc.contributor.author | Doody, G A | |
dc.contributor.author | Murray, R M | |
dc.contributor.author | Kapur, S | |
dc.contributor.author | Dazzan, P | |
dc.date.accessioned | 2012-09-17T09:01:15Z | |
dc.date.available | 2012-09-17T09:01:15Z | |
dc.date.issued | 2012-05 | |
dc.identifier.citation | Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study. 2012, 42 (5):1037-47 Psychol Med | en_GB |
dc.identifier.issn | 1469-8978 | |
dc.identifier.pmid | 22059690 | |
dc.identifier.doi | 10.1017/S0033291711002005 | |
dc.identifier.uri | http://hdl.handle.net/10147/244207 | |
dc.description.abstract | To date, magnetic resonance imaging (MRI) has made little impact on the diagnosis and monitoring of psychoses in individual patients. In this study, we used a support vector machine (SVM) whole-brain classification approach to predict future illness course at the individual level from MRI data obtained at the first psychotic episode. | |
dc.language.iso | en | en |
dc.relation.url | http://journals.cambridge.org/download.php?file=%2F25539_0E81A2842381C7988A0DAD68AE8195F9_journals__PSM_PSM42_05_S0033291711002005a.pdf&cover=Y&code=dc5e5e7db712fa74d298f403f4d38dc7 | en_GB |
dc.relation.url | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315786/pdf/S0033291711002005a.pdf | en_GB |
dc.rights | Archived with thanks to Psychological medicine | en_GB |
dc.subject.mesh | Adult | |
dc.subject.mesh | Brain | |
dc.subject.mesh | Brain Mapping | |
dc.subject.mesh | Cohort Studies | |
dc.subject.mesh | Disease Progression | |
dc.subject.mesh | Female | |
dc.subject.mesh | Follow-Up Studies | |
dc.subject.mesh | Humans | |
dc.subject.mesh | Image Processing, Computer-Assisted | |
dc.subject.mesh | Individuality | |
dc.subject.mesh | Magnetic Resonance Imaging | |
dc.subject.mesh | Male | |
dc.subject.mesh | Observer Variation | |
dc.subject.mesh | Predictive Value of Tests | |
dc.subject.mesh | Psychotic Disorders | |
dc.subject.mesh | Reproducibility of Results | |
dc.subject.mesh | Support Vector Machines | |
dc.title | Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study. | en_GB |
dc.type | Article | en |
dc.contributor.department | Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, UK. | en_GB |
dc.identifier.journal | Psychological medicine | en_GB |
dc.description.province | Leinster | en |
html.description.abstract | To date, magnetic resonance imaging (MRI) has made little impact on the diagnosis and monitoring of psychoses in individual patients. In this study, we used a support vector machine (SVM) whole-brain classification approach to predict future illness course at the individual level from MRI data obtained at the first psychotic episode. |