Show simple item record

dc.contributor.authorMourao-Miranda, J
dc.contributor.authorReinders, A A T S
dc.contributor.authorRocha-Rego, V
dc.contributor.authorLappin, J
dc.contributor.authorRondina, J
dc.contributor.authorMorgan, C
dc.contributor.authorMorgan, K D
dc.contributor.authorFearon, P
dc.contributor.authorJones, P B
dc.contributor.authorDoody, G A
dc.contributor.authorMurray, R M
dc.contributor.authorKapur, S
dc.contributor.authorDazzan, P
dc.date.accessioned2012-09-17T09:01:15Z
dc.date.available2012-09-17T09:01:15Z
dc.date.issued2012-05
dc.identifier.citationIndividualized prediction of illness course at the first psychotic episode: a support vector machine MRI study. 2012, 42 (5):1037-47 Psychol Meden_GB
dc.identifier.issn1469-8978
dc.identifier.pmid22059690
dc.identifier.doi10.1017/S0033291711002005
dc.identifier.urihttp://hdl.handle.net/10147/244207
dc.description.abstractTo date, magnetic resonance imaging (MRI) has made little impact on the diagnosis and monitoring of psychoses in individual patients. In this study, we used a support vector machine (SVM) whole-brain classification approach to predict future illness course at the individual level from MRI data obtained at the first psychotic episode.
dc.language.isoenen
dc.relation.urlhttp://journals.cambridge.org/download.php?file=%2F25539_0E81A2842381C7988A0DAD68AE8195F9_journals__PSM_PSM42_05_S0033291711002005a.pdf&cover=Y&code=dc5e5e7db712fa74d298f403f4d38dc7en_GB
dc.relation.urlhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315786/pdf/S0033291711002005a.pdfen_GB
dc.rightsArchived with thanks to Psychological medicineen_GB
dc.subject.meshAdult
dc.subject.meshBrain
dc.subject.meshBrain Mapping
dc.subject.meshCohort Studies
dc.subject.meshDisease Progression
dc.subject.meshFemale
dc.subject.meshFollow-Up Studies
dc.subject.meshHumans
dc.subject.meshImage Processing, Computer-Assisted
dc.subject.meshIndividuality
dc.subject.meshMagnetic Resonance Imaging
dc.subject.meshMale
dc.subject.meshObserver Variation
dc.subject.meshPredictive Value of Tests
dc.subject.meshPsychotic Disorders
dc.subject.meshReproducibility of Results
dc.subject.meshSupport Vector Machines
dc.titleIndividualized prediction of illness course at the first psychotic episode: a support vector machine MRI study.en_GB
dc.typeArticleen
dc.contributor.departmentCentre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, UK.en_GB
dc.identifier.journalPsychological medicineen_GB
dc.description.provinceLeinsteren
html.description.abstractTo date, magnetic resonance imaging (MRI) has made little impact on the diagnosis and monitoring of psychoses in individual patients. In this study, we used a support vector machine (SVM) whole-brain classification approach to predict future illness course at the individual level from MRI data obtained at the first psychotic episode.


This item appears in the following Collection(s)

Show simple item record