• Mechanisms driving local breast cancer recurrence in a model of breast-conserving surgery.

      Smith, Myles J; Culhane, Aedin C; Killeen, Shane; Kelly, Maura A; Wang, Jiang H; Cotter, Thomas G; Redmond, Henry P; Department of Academic Surgery, Cork University Hospital, Cork, Ireland., mylessmith@hotmail.com (2012-02-03)
      OBJECTIVE: We aimed to identify mechanisms driving local recurrence in a model of breast-conserving surgery (BCS) for breast cancer. BACKGROUND: Breast cancer recurrence after BCS remains a clinically significant, but poorly understood problem. We have previously reported that recurrent colorectal tumours demonstrate altered growth dynamics, increased metastatic burden and resistance to apoptosis, mediated by upregulation of phosphoinositide-3-kinase/Akt (PI3K/Akt). We investigated whether similar characteristics were evident in a model of locally recurrent breast cancer. METHODS: Tumours were generated by orthotopic inoculation of 4T1 cells in two groups of female Balb/c mice and cytoreductive surgery performed when mean tumour size was above 150 mm(3). Local recurrence was observed and gene expression was examined using Affymetrix GeneChips in primary and recurrent tumours. Differential expression was confirmed with quantitative real-time polymerase chain reaction (qRT-PCR). Phosphorylation of Akt was assessed using Western immunoblotting. An ex vivo heat shock protein (HSP)-loaded dendritic cell vaccine was administered in the perioperative period. RESULTS: We observed a significant difference in the recurrent 4T1 tumour volume and growth rate (p < 0.05). Gene expression studies suggested roles for the PI3K/Akt system and local immunosuppression driving the altered growth kinetics. We demonstrated that perioperative vaccination with an ex vivo HSP-loaded dendritic cell vaccine abrogated recurrent tumour growth in vivo (p = 0.003 at day 15). CONCLUSION: Investigating therapies which target tumour survival pathways such as PI3K/Akt and boost immune surveillance in the perioperative period may be useful adjuncts to contemporary breast cancer treatment.
    • Phosphoinositide 3-kinase accelerates postoperative tumor growth by inhibiting apoptosis and enhancing resistance to chemotherapy-induced apoptosis. Novel role for an old enemy.

      Coffey, J Calvin; Wang, Jiang Huai; Smith, Myles J F; Laing, Alan; Bouchier-Hayes, David; Cotter, Tom G; Redmond, H Paul; Department of Surgery, Cork University Hospital, Wilton, Cork, Munster, Ireland. , calvincoffey@hotmail.com (2012-02-03)
      Tumor removal remains the principal treatment modality in the management of solid tumors. The process of tumor removal may potentiate the resurgent growth of residual neoplastic tissue. Herein, we describe a novel murine model in which flank tumor cytoreduction is followed by accelerated local tumor recurrence. This model held for primary and recurrent tumors generated using a panel of human and murine (LS174T, DU145, SW480, SW640, and 3LL) cell lines and replicated accelerated tumor growth following excisional surgery. In investigating this further, epithelial cells were purified from LS174T primary and corresponding recurrent tumors for comparison. Baseline as well as tumor necrosis factor apoptosis-inducing ligand (TRAIL)-induced apoptosis were significantly reduced in recurrent tumor epithelia. Primary and recurrent tumor gene expression profiles were then compared. This identified an increase and reduction in the expression of p110gamma and p85alpha class Ia phosphoinositide 3-kinase (PI3K) subunits in recurrent tumor epithelia. These changes were further confirmed at the protein level. The targeting of PI3K ex vivo, using LY294002, restored sensitivity to TRAIL in recurrent tumor epithelia. In vivo, adjuvant LY294002 prolonged survival and significantly attenuated recurrent tumor growth by greatly enhancing apoptosis levels. Hence, PI3K plays a role in generating the antiapoptotic and chemoresistant phenotype associated with accelerated local tumor recurrence.