• Bacterial lipoprotein-induced tolerance is reversed by overexpression of IRAK-1.

      Li, Chong Hui; Liu, Jinghua; An, Mingbang; Redmond, H Paul; Wang, Jiang Huai; Department of Academic Surgery, University College Cork (UCC)/National University of Ireland (NUI), Cork University Hospital, Cork, Ireland. (2012-03)
      Tolerance to bacterial cell wall components including bacterial lipoprotein (BLP) represents an essential regulatory mechanism during bacterial infection. Reduced Toll-like receptor 2 (TLR2) and IL-1 receptor-associated kinase 1 (IRAK-1) expression is a characteristic of the downregulated TLR signaling pathway observed in BLP-tolerised cells. In this study, we attempted to clarify whether TLR2 and/or IRAK-1 are the key molecules responsible for BLP-induced tolerance. Transfection of HEK293 cells and THP-1 cells with the plasmid encoding TLR2 affected neither BLP tolerisation-induced NF-κB deactivation nor BLP tolerisation-attenuated pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) production, indicating that BLP tolerance develops despite overexpression of TLR2 in these cells. In contrast, overexpression of IRAK-1 reversed BLP-induced tolerance, as transfection of IRAK-1 expressing vector resulted in a dose-dependent NF-κB activation and TNF-α release in BLP-tolerised cells. Furthermore, BLP-tolerised cells exhibited markedly repressed NF-κB p65 phosphorylation and impaired binding of p65 to several pro-inflammatory cytokine gene promoters including TNF-α and interleukin-6 (IL-6). Overexpression of IRAK-1 restored the nuclear transactivation of p65 at both TNF-α and IL-6 promoters. These results indicate a crucial role for IRAK-1 in BLP-induced tolerance, and suggest IRAK-1 as a potential target for manipulation of the TLR-mediated inflammatory response during microbial sepsis.
    • Emergence of MRSA clone ST22 in healthy young adults in the community in the absence of risk factors.

      Mollaghan, A M; Lucey, B; Coffey, A; Cotter, L; Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland. (2010-05)
      One thousand adults aged between 18 and 35 years were investigated for nasal colonization with community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). Each volunteer completed a questionnaire to assess the presence or absence of risk factors for hospital-acquired MRSA (HA-MRSA) carriage. All MRSA isolated were characterized by microbiological and molecular methods. A S. aureus carriage rate of 22% and a MRSA carriage rate of 0.7% were observed. Analysis of the questionnaires revealed 121 individuals with HA-MRSA risk factors. Subsequently two MRSA infections with associated risk factors were excluded from calculation of the true carriage rate and an adjusted rate of 0.57% (5/879) was established. All seven MRSA isolates expressed the genotypic profile ST22-MRSA-IV, were PVL negative, agr type 1, and differed only by their antimicrobial susceptibility patterns. ST22-MRSA-IV (EMRSA-15) has shown worldwide spread in the hospital setting but has not been previously documented in isolation in the community.
    • ST2 negatively regulates TLR2 signaling, but is not required for bacterial lipoprotein-induced tolerance.

      Liu, Jinghua; Buckley, Julliette M; Redmond, H Paul; Wang, Jiang Huai; Department of Academic Surgery, University College Cork/National University of Ireland, Cork University Hospital, Cork, Ireland. (2010-05-15)
      Activation of TLR signaling is critical for host innate immunity against bacterial infection. Previous studies reported that the ST2 receptor, a member of the Toll/IL-1 receptor superfamily, functions as a negative regulator of TLR4 signaling and maintains LPS tolerance. However, it is undetermined whether ST2 negatively regulates TLR2 signaling and furthermore, whether a TLR2 agonist, bacterial lipoprotein (BLP)-induced tolerance is dependent on ST2. In this study, we show that BLP stimulation-induced production of proinflammatory cytokines and immunocomplex formation of TLR2-MyD88 and MyD88-IL-1R-associated kinase (IRAK) were significantly enhanced in ST2-deficient macrophages compared with those in wild-type controls. Furthermore, overexpression of ST2 dose-dependently attenuated BLP-induced NF-kappaB activation, suggesting a negative regulatory role of ST2 in TLR2 signaling. A moderate but significantly attenuated production of TNF-alpha and IL-6 on a second BLP stimulation was observed in BLP-pretreated, ST2-deficient macrophages, which is associated with substantially reduced IRAK-1 protein expression and downregulated TLR2-MyD88 and MyD88-IRAK immunocomplex formation. ST2-deficient mice, when pretreated with a nonlethal dose of BLP, benefitted from an improved survival against a subsequent lethal BLP challenge, indicating BLP tolerance develops in the absence of the ST2 receptor. Taken together, our results demonstrate that ST2 acts as a negative regulator of TLR2 signaling, but is not required for BLP-induced tolerance.