• From caffeine to fish waste: amine compounds present in food and drugs and their interactions with primary amine oxidase.

      Olivieri, Aldo; Rico, Daniel; Khiari, Zhied; Henehan, Gary; O'Sullivan, Jeff; Tipton, Keith; School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland. oliviera@tcd.ie (2011-07)
      Tissue bound primary amine oxidase (PrAO) and its circulating plasma-soluble form are involved, through their catalytic activity, in important cellular roles, including the adhesion of lymphocytes to endothelial cells during various inflammatory conditions, the regulation of cell growth and maturation, extracellular matrix deposition and maturation and glucose transport. PrAO catalyses the oxidative deamination of several xenobiotics and has been linked to vascular toxicity, due to the generation of cytotoxic aldehydes. In this study, a series of amines and aldehydes contained in food and drugs were tested via a high-throughput assay as potential substrates or inhibitors of bovine plasma PrAO. Although none of the compounds analyzed were found to be substrates for the enzyme, a series of molecules, including caffeine, the antidiabetics phenformin and tolbutamide and the antimicrobial pentamidine, were identified as PrAO inhibitors. Although the inhibition observed was in the millimolar and micromolar range, these data show that further work will be necessary to elucidate whether the interaction of ingested biogenic or xenobiotic amines with PrAO might adversely affect its biological roles.
    • Interaction of L-lysine and soluble elastin with the semicarbazide-sensitive amine oxidase in the context of its vascular-adhesion and tissue maturation functions.

      Olivieri, Aldo; O'Sullivan, Jeff; Fortuny, Luis Raimon Alvarez; Vives, Itziar Larrauri; Tipton, Keith F; School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland. oliviera@tcd.ie (2010-04)
      The copper-containing quinoenzyme semicarbazide-sensitive amine oxidase (EC; SSAO) is a multifunctional protein. In some tissues, such as the endothelium, it also acts as vascular-adhesion protein 1 (VAP-1), which is involved in inflammatory responses and in the chemotaxis of leukocytes. Earlier work had suggested that lysine might function as a recognition molecule for SSAO/VAP-1. The present work reports the kinetics of the interaction of L-lysine and some of its derivatives with SSAO. Binding was shown to be saturable, time-dependent but reversible and to cause uncompetitive inhibition with respect to the amine substrate. It was also specific, since D-lysine, L-lysine ethyl ester and epsilon-acetyl-L-lysine, for example, did not bind to the enzyme. The lysine-rich protein soluble elastin bound to the enzyme relatively tightly, which may have relevance to the reported roles of SSAO in maintaining the extracellular matrix (ECM) and in the maturation of elastin. Our data show that lysyl residues are not oxidized by SSAO, but they bind tightly to the enzyme in the presence of hydrogen peroxide. This suggests that binding in vivo of SSAO to lysyl residues in physiological targets might be regulated in the presence of H(2)O(2), formed during the oxidation of a physiological SSAO substrate, yet to be identified.