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Abstract

Background: Large for gestational age infants have an increased risk of obesity, cardiovascular and metabolic
complications during life. Knowledge of the key predictive factors of neonatal adiposity is required to devise
targeted antenatal interventions. Our objective was to determine the fetal metabolic factors that influence
regional neonatal adiposity in a cohort of women with previous large for gestational age offspring.

Methods: Data from the ROLO [Randomised COntrol Trial of LOw Glycaemic Index in Pregnancy] study were analysed
in the ROLO Kids study. Neonatal anthropometric and skinfold measurements were compared with fetal leptin and
C-peptide results from cord blood in 185 cases. Analyses were performed to examine the association between these
metabolic factors and birthweight, anthropometry and markers of central and generalised adiposity.

Results: Fetal leptin was found to correlate with birthweight, general adiposity and multiple anthropometric
measurements. On multiple regression analysis, fetal leptin remained significantly associated with adiposity, independent
of gender, maternal BMI, gestational age or study group assignment, while fetal C-peptide was no longer significant.

Conclusion: Fetal leptin may be an important predictor of regional neonatal adiposity. Interventional studies are required
to assess the impact of neonatal adiposity on the subsequent risk of childhood obesity and to determine whether
interventions which reduce circulating leptin levels have a role to play in improving neonatal adiposity measures.
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Background
Many factors, both maternal and environmental, are
known to affect birthweight [1]. Infant size at birth is
widely accepted to be an important determinant of later
adult health [2], with neonates at both ends of the birth-
weight spectrum at risk of future health complications.
Birthweight, and in particular the incidence of large for
gestational age (LGA) infants, is increasing in most pop-
ulations [3–5] which may be attributed to the increasing
prevalence of maternal obesity and gestational diabetes
mellitus [GDM] [4]. GDM incidence has estimated in-
creases of 10 to 100 % for varying races and ethnicities
over the last 20 years [6, 7]. Birthweight however is un-
likely to be the best method of assessing nutritional sta-
tus in the neonate and the resultant health impact.

Previous research by Muthayya et al. [8] has shown that for
the same birth weight different populations can different in
their percentage of fat mass to lean mass, hence birthweight
alone is a crude estimate of adiposity in children.
Not all LGA infants are born to diabetic mothers how-

ever. Women with normal glucose tolerance are also at
risk of delivering larger weight babies at term [9]. Preven-
tion of LGA in the euglycaemic population is therefore an
area of increasing interest. We recently performed a RCT
of low glycaemic index diet in pregnancy [10] (ROLO
Study), and while it was not found to reduce the incidence
of LGA infants in a group already at risk of fetal macroso-
mia, it did, however, have a significant positive effect on
maternal glucose intolerance and maternal gestational
weight gain.
Birth of a LGA or macrosomic infant presents a variety

of obstetric and perinatal complications including in-
creased risk of caesarean or instrumental delivery, transfer
to a neonatal intensive care unit, shoulder dystocia [11],
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neonatal hypoglycaemia [12], and hip subluxation [13].
Furthermore, the developmental origins of adult disease
hypothesis describes how large size at birth may predis-
pose to early childhood obesity [14] and the metabolic
syndrome and cardiovascular disease in later life [15, 16].
Thus, interventions to reduce the incidence of LGA and
promote healthy birthweight are urgently required to im-
prove pregnancy and future health outcomes. Birthweight
alone however is a relatively crude assessment of neonatal
adiposity. Greater knowledge of body composition and fat
distribution in neonates may help to ascertain specific risk
models that predict future childhood obesity and meta-
bolic ill-health [17], which can subsequently be targeted in
antenatal interventions.
While air displacement plethysmography is a validated

form of adiposity measurement in neonates [18] this is
often not practical or available. Anthropometric mea-
surements including abdominal, chest and thigh circum-
ferences and subscapular, biceps, triceps and thigh
skinfold thicknesses, offer a simple alternative for asses-
sing neonatal adiposity in the clinical setting [19, 20].
Leptin is an adipocyte secreted circulating polypeptide

hormone expressed in the adipose tissue [21] that was
first discovered in 1994. In adults it has a role to play in
energy modulation of the body via a negative feedback
mechanism between the centre of satiety in the hypo-
thalamus and the adipose tissue [22]. In normal physio-
logical conditions, it acts to promote energy expenditure
and to inhibit feeding [23]. In utero the role of leptin is
less clear. While the majority of leptin production occurs
in the aforementioned adipocytes, leptin may also origin-
ate from other fetal tissues including the placenta [24, 25].
It is not clear however if placental-derived leptin has any
role to play in fetal growth with some research suggesting
that the majority of placental derived leptin may infact
transfer to the maternal circulation [26]. A relationship
between cord leptin and birthweight has previously been
demonstrated by Lawlor et al. [27] and Clapp et al. [28].
As yet however the effect of leptin on individual areas of
adiposity as determined by skinfolds has not been deter-
mined to our knowledge and its role as a growth factor re-
mains inconclusive. As the expression of leptin is
widespread in fetal tissue it suggests that it has an import-
ant role to play in fetal development [24].
C-peptide results from the transformation of proinsulin

into insulin and was first discovered in 1967 with the dis-
covery of the insulin synthesis pathway [29] and is an estab-
lished effective marker of insulin secretion. Pedersen
established the link between maternal glucose homeostasis
and the fetal pancreatic response in 1952 [30]. It has been
established that while glucose crosses the placenta, insulin
cannot and therefore maternal hyperglycaemia causes a
subsequent fetal hyperglycaemia and hyperinsulinaemia
resulting in increased birthweight [31, 32]. Previous studies

have also reported correlations between levels of cord C-
peptide and birthweight [33–35].
To date, antenatal lifestyle interventions that target

maternal nutrition and exercise in pregnancy have dem-
onstrated limited effects on improving birthweight [36].
However, there is evidence for neuroendocrine fetal pro-
gramming of birthweight through circulating maternal
and fetal adipocytokines [37], which requires further in-
vestigation to ascertain the optimal interventions that
may target these mechanisms. Previous studies have
identified a positive association between fetal leptin and
birthweight [38–40]. Consistent with the findings of
Sewell et al. [41] Catelano et al. [42] determined that the
offspring of obese mothers have an increased fat mass
and percentage body fat compared with offspring of lean
mothers and that increased fetal adiposity and fetal insu-
lin resistance are closely associated hence the decision to
study cord C-peptide along with cord leptin and its po-
tential association with adiposity.
There is a paucity of literature investigating the link

between fetal metabolic markers of obesity and more in-
depth anthropometric measures of neonatal adiposity,
which could provide valuable insight into the fetal ori-
gins of future obesity and metabolic disease. The only
two studies we identified [43, 44] that looked at anthro-
pometry in detail were in cohorts not at risk of macroso-
mia and subsequently early childhood obesity.
Therefore, the aim of this study was to determine the

association between fetal metabolic factors and individ-
ual areas of neonatal adiposity, with a specific focus on
fetal leptin and cord C-peptide in a cohort at high risk
of macrosomia and early childhood obesity with a mean
birthweight of greater than 4 kg.

Methods
This is a follow on study of 185 infants born to women
from the ROLO randomised controlled trial on whom
cord blood C-peptide and leptin data were available as
well as anthropometry at birth. Skinfold measurements
were available for 147. The ROLO study was a rando-
mised controlled trial of a low GI dietary intervention
versus usual care among 800 non-diabetic, secundigra-
vida women with a history of macrosomia, with the pri-
mary objective of reducing birthweight. Bloods including
C-peptide and leptin were taken in early and late preg-
nancy and fetal sample from cord blood. Detailed method-
ology [45] and findings of the ROLO Study have been
previously published [10]. The low GI dietary intervention
in this study had no impact on birthweight or other neo-
natal outcomes, including various neonatal anthropomet-
ric measures except for thigh circumference [46]. The
original ROLO trial had appropriate ethics approval from
the National Maternity Hospital Ireland. This follow on
trial had appropriate institutional ethics approval from
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Our Ladys’ Children’s Hospital Crumlin and the National
Maternity Hospital Ireland and written informed consent
from all patients involved or their guardian in the case of
the offspring, and was performed in accordance with the
ethical standards laid down in the 1964 Declaration of
Helsinki and its later amendments.

Data collection
At their first antenatal consultation (13.0 ± 2.3 weeks), all
participants had their weight and height recorded and
their body mass index (BMI) calculated. Whether or not
the mothers had achieved third level education was re-
corded as a marker of socioeconomic status. Father’s
height was recorded if fathers were present at the consult-
ation or if mothers were sure of their partner’s height
when asked. Father’s weight was recorded if they attended
an antenatal consultation. Cord bloods were collected at
delivery and neonatal anthropometric measurements were
taken during the first 72 h of life including; birthweight,
length, occipital frontal head circumference (OFC), chest,
abdominal, thigh and mid upper arm circumferences.
Each measurement was taken by a trained operator in
triplicate and the average result recorded. To ensure
standardisation, one in three neonates had measurements
repeated by a second trained observer and the average
value was compared to that of the first operator [20]. Mea-
surements were repeated for a third time (n = 3) if any
large discrepancy (>1 cm) was noted between the ob-
servers. Birthweight was measured on a Seca calibrated
scales. A Seca lasso tape [47] was used for all circumfer-
ences and crown heel length was also recorded on a Seca
measuring board [20]. A subgroup (among total ROLO
population) also had skinfold measurements obtained by a
trained observer using Holtain callipers, which included
biceps, triceps, subscapular and thigh skinfold thicknesses
[48]. Measurements were recorded following the ROLO
Kids Standard Operating Procedure which was based on
the National Health and Nutrition Examination Survey
procedure [49].
Subscapular-to-triceps skinfold ratio (SS/TR) [50] and

waist-to-height ratio [51] were calculated and used as
markers of central adiposity while the sum of all skin-
folds and subscapular plus triceps skinfolds [SS + TR]
were used as markers of general adiposity [50].

Laboratory methods
Multianalyte profiling was performed on the Luminex
Magpix system (Luminex Corporation, Austin, USA.).
Fetal insulin resistance was assessed via cord blood C-
peptide estimation. Plasma concentrations of leptin and
C-peptide were determined by the Human Endocrine
Panel.

Statistical analysis
All statistical analyses were performed using SPSS version
20.0 (SPSS Inc., Chicago, IL). Data were assessed for nor-
mality by visual inspection of histograms. Descriptive sta-
tistics were employed to describe baseline maternal and
neonatal characteristics, cord blood C-peptide and leptin
concentrations and neonatal anthropometry. Differences
in each of these baseline and anthropometric variables be-
tween the original ROLO Study intervention and control
groups were assessed using the independent samples t-test
and the chi-squared test for continuous and categorical
variables, respectively. Correlations between cord blood
C-peptide and leptin and each of the neonatal anthropo-
metric measures were analysed. Significantly correlated
variables (p < 0.05) including maternal leptin measured in
early and late pregnancy (which may have influenced cord
leptin levels) were subsequently analysed by simple linear
regression, with each anthropometric measure as the
dependent variable, and then imputed into multiple linear
regression models using a combination of forced entry
and backwards stepwise procedures. Factors known to in-
fluence neonatal size [52, 53], i.e. total gestational age, in-
fant gender, maternal BMI and maternal educational level
(as a marker of socioeconomic status) were included in
the models as forced entry variables. As this was a second-
ary analysis of a randomized trial, the original group as-
signment (dietary intervention vs. no intervention) from
the ROLO study was also included as a forced entry vari-
able. The final model was used as the best predictor of the
change in the dependant variable.

Results
The mean maternal BMI was 27 kg/m2, and the mean
birthweight, was above 4 kg indicating that this is a
macrosomic cohort of neonates (Table 1). Total gesta-
tional age differed significantly between the ROLO study
groups, such that infants born to women in the interven-
tion group were more gestationally mature compared to
infants of control group women (Table 1). The neonatal
anthropometric measures did not differ between the
ROLO study intervention and control groups (Additional
file 1: Table S1).
Cord blood C-peptide significantly positively corre-

lated with all skinfold thickness measures, sum of all
skinfolds and sum of subscapular and triceps skinfold
(see Additional file 2: Table S2). Cord blood leptin was
significantly positively correlated with all anthropometric
measures except head circumference and subscapular-
triceps skinfold ratio. There was no significant difference
in the degree of association between cord leptin and
each circumference or skinfolds using simple linear re-
gression (Additional file 2: Table S2).
Multiple linear regression analysis determined the

most significant predictive model for each outcome
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variable [Table 2]. Fetal leptin was the most significant
determinant of each of the anthropometric markers in-
cluding abdominal, thigh, chest and arm circumferences.
It was also the most significant determinant in the final
model for waist-height ratio, a marker of central adipos-
ity, overall neonatal adiposity as determined by SS + TR
and sum of skinfolds, independent of maternal BMI,
neonatal gender, total gestational age, maternal educa-
tion or study group assignment. There was no difference
noted in the degree of association between the individual
circumferences and skinfolds and fetal leptin. All were
significantly associated with fetal leptin with (p < 0.05).
Earlier associations of C-peptide with neonatal anthro-
pometry became non-significant in the multiple regres-
sion models perhaps due to the effect being attenuated
by the cord leptin.
While no universal agreement exists regarding the use

of multiple testing corrections, the multiple regression re-
sults for birthweight, mid upper arm circumference, sub-
scapular skinfold, thigh skinfold, sum of skinfolds and
subscapular plus triceps skinfold thickness would all have
survived a Bonferroni correction for the 23 [original] pre-
dictors examined (p < 0.0022).

Conclusion and discussion
We have comprehensively examined regional neonatal
anthropometry and its relationship to fetal leptin and
fetal C-peptide in a European cohort at risk of macroso-
mia and subsequent childhood obesity. As the average
birthweight is increasing internationally it is important
to examine the influence of fetal metabolic parameters
in this cohort and the individualised effect of these
markers on regional areas of adiposity.

While previous studies have shown a connection be-
tween cord leptin and birthweight [27, 28] few have
looked at individualised anthropometric markers and
hence a true connection with cord leptin and regional
areas of neonatal adiposity. Two previous studies have
ascertained a link between fetal leptin and neonatal an-
thropometry, but cord C-peptide was not included in
the analysis. The first involved a cohort with an average
birthweight of 3.77Kg [43] conducted in China in 2004
and the second [44] a cohort with an average birth-
weight of 2.95Kg in Lithuania. We believe our study is
the largest study to examine the correlation between
cord leptin and cord C-peptide on individual markers of
neonatal adiposity in a cohort at risk of early childhood
obesity.
These data confirm the association between cord lep-

tin and individual markers of neonatal adiposity. While
early pregnancy maternal leptin was associated with neo-
natal abdominal circumferences and neonatal subscapu-
lar skinfold thicknesses, and late pregnancy leptin levels
with triceps skinfolds and the SS + TR marker, it is fetal
leptin which is most significantly associated with birth-
weight, individual markers of regional adiposity and also
markers of central and general adiposity. On multiple
regression analysis, fetal leptin remained positively asso-
ciated with neonatal anthropometry, independent of
BMI, neonatal gender total gestational age or study
group assignment. There was no significant difference in
the degree of association between fetal leptin and the
various individual markers of adiposity. This suggests
that the effect of leptin on adiposity is generalised and
not limited to central or peripheral adiposity as deter-
mined by the various markers measured in our study.
Fetal C-peptide was no longer significantly associated

Table 1 Baseline characteristics among the total sample and by intervention group of the original ROLO study

Total Intervention Control P-value

(n = 185) (n = 89) (n = 96)

Mean (SDa)

Maternal age (years) 32.6 (4.2) 33.0 (3.8) 32.4 (4.3) 0.415

Maternal early pregnancy BMIa (kg/m2) 26.9 (4.7) 27.4 (4.9) 26.6 (4.5) 0.267

Total gestational age (days) 282.9 (7.2) 284.1 (7.0) 281.7 (7.3) 0.022

Neonatal birthweight (kg) 4.08 (0.48) 4.11 (0.51) 4.05 (0.45) 0.414

Median (IQRa)

Cord C-peptide (ng/ml) 567.13 (4106.2) 619.66 (4106.2) 562.67 (3044) 0.0.991

Cord leptin (ng/ml) 27.40 (28.6) 29.8 (30.68) 26.66 (28.60) 0.0.978

N (%)

Mother smoked in pregnancy 5 (2.7) 3 (3.4) 2 (2.2) 0.596

Mother achieved third level education education 100 (54.1) 42 (47.2) 57 (59.4) 0.104

Male baby 85 (45.9) 44 (49.4) 41 (42.7) 0.322
aBMI, body mass index; IQR, interquartile range; SD, standard deviation. P-values calculated by the independent samples t-test for normally distributed continuous
variables, Mann–Whitney U test for non-normal continuous variables (cord C-peptide and leptin) and the chi-squared test for categorical variables
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with any adiposity measures however fetal C-peptide was
strongly correlated with cord leptin (correlation coefficient
0.415, p < 0.001) which may explain why c-peptide was
not determined to be an independent correlate of the an-
thropometry .
What remains unclear however is, if fetal leptin is

higher in those with larger skinfolds and circumferences
simply as it is secreted by the fetal adipose tissue or if it
has a roll to play as a growth factor. Previous research
has shown that neonates born LGA do indeed have

higher levels of cord blood leptin than those born small
for gestational age [54] and that fetal leptin is also a pre-
dictor of fat mass at birth [55] and at 3 years of age [35].
Hassink et al. [56] showed that serum leptin concentra-
tions in newborns were increased more than three-fold
compared with children in the early stages of puberty
when controlled for adiposity, therefore suggesting that
leptin concentrations in the newborn were not explained
by adiposity alone. Prior research has also shown that
leptin receptors are widely located in the developing
fetus suggesting that leptin is involved in fetal growth
e.g. Javaid et al. [57]. At present while no specific studies
have proven that fetal leptin is a major growth factor in
fetal development, the majority of these studies, as with
ours, have been conducted using gross markers of adi-
posity e.g. birth weight. It may be then that the influence
of leptin as a growth factor is at the cellular level. A
large review of the role of leptin as a nutritional signal
by Forhead et al. [24] concluded that while the roll of
leptin as a growth factor remains unclear, the widespread
expression of leptin suggests that leptin has physiological
significance in fetal life. This is consistent with our find-
ings that fetal leptin is associated with birthweight and
adiposity as determined by individual anthropometry in
the neonatal period.
This was a well characterised cohort from the ROLO

study, which was a randomised controlled study examin-
ing neonates born to non-diabetic women with a history
of a previous macrosomic child. As the ROLO Study did
not find any difference in the birthweight [10] or adiposity
measures except the aforementioned thigh circumference
[46] of the neonates between intervention and control
groups, this has facilitated follow-up analysis of the off-
spring as a cohort of healthy babies born to non-diabetic
healthy mothers. The current study is strengthened by the
use of multiple regression analysis and inclusion of a var-
iety of neonatal anthropometric measurements to assess
both generalised and central adiposity.
Our study has some limitations worthy of consider-

ation. As previously mentioned, participants of the
ROLO study were all secundigravida and non-diabetic.
Although women who had previously been diagnosed
with gestational diabetes were excluded, as genetics are
known to play a role in the determination of birth-
weight, the cohort may have had a selection bias in
choosing women who were more likely to have a larger
birthweight baby.
The intervention group in the ROLO study were

instructed to change to a low GI diet. Although this
intervention was shown not to affect birthweight or lep-
tin concentrations, the reduced gestational weight gain
among the intervention group [58] and conscious diet
alternation of the unblinded control group may have
moderated the fetal leptin results. Additionally while the

Table 2 Multiple linear regression of the association between
neonatal anthropometry and cord blood C-peptide and leptin

B S.E.B. P-value R2 F P-value

Birthweight (Kg)

Fetal Leptin 7.611 3.036 0.017 0.422 5.688 <0.001

Father’s Weight 13.381 5.607 0.022

Abdominal circumference (cm)

Fetal Leptin 0.038 0.010 <0.001 0.112 3.137 0.005

Leptin 1st Trimester 0.057 0.025 0.022

Thigh circumference (cm)

Fetal Leptin 0.017 0.009 0.046 0.073 2.072 0.066

Chest circumference (cm)

Fetal Leptin 0.031 0.011 0.006 0.059 2.556 0.024

Mid-upper arm circumference (cm) (cm)

Fetal Leptin 0.018 0.005 <0.001 0.105 3.888 < 0.001

Waist-height ratio

Fetal Leptin 0.001 0.000 0.015 0.135 1.83 0.132

Subscapular skinfold thickness (mm)

Fetal Leptin 0.029 0.007 <0.001 0.312 5.142 <0.001

Early Pregnancy Leptin −0.054 0.017 0.002

Triceps skinfold thickness (mm)

Fetal Leptin 0.025 0.010 0.019 0.177 2.755 0.017

Late Pregnancy Leptin −0.037 0.016 0.024

Biceps skinfold thickness (mm)

Fetal Leptin 0.027 0.006 <0.001 0.137 3.637 0.003

Thigh skinfold thickness (mm)

Fetal Leptin 0.035 0.007 <0.001 0.173 5.414 <0.001

Sum of all skinfolds (mm)

Fetal Leptin 0.130 0.022 <0.001 0.296 6.250 <0.001

SS + TR skinfold thickness (mm)

Fetal Leptin 0.055 0.014 <0.001 0.253 4.195 <0.001

Late Pregnancy Leptin −0.054 0.022 0.018

SS = Subscapular, TR = Triceps, SS/TR = Central Adiposity SS + TR = General
Adiposity, SF = skinfolds. All Multiple Regression analysis included Maternal
BMI, Group, Gender, Total Gestation and Maternal Education Level of
achievement as Enter variables. Anthropometry was the dependant variable.
Only independent variables with a significant effect [p < 0.005] on the
dependant variable as determined via simple linear regression were included
in the multiple linear regression analysis. S.E.B. is the standard error of the
computed value of b
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equations of subscapular plus triceps skinfolds and sub-
scapular/triceps ratio are widely accepted to correlate
closely with DXA measurements of fat mass [59, 60]
they have not specifically been validated in our age
group.
Our findings have contributed to a growing body of

evidence that the fetal metabolic milieu plays a vital role
in the determination of neonatal adiposity at birth in
non-diabetic pregnancies and that fetal leptin may be a
key metabolic factor to target in these pathways. Inter-
ventional studies are required to assess the impact of
neonatal adiposity on the subsequent risk of childhood
obesity and to determine whether interventions which
reduce circulating leptin levels have a role to play in im-
proving neonatal adiposity measures.
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