1866-1955-6-42 1866-1955 Research <p>Hippocampal glutamate-glutamine (Glx) in adults with Down syndrome: a preliminary study using <it>in vivo</it> proton magnetic resonance spectroscopy (<sup>1</sup>H MRS)</p> TanMYGilesgiles.tan@kcl.ac.uk BeacherFelixfelixbeacher@gmail.com DalyEileeneileen.daly@kcl.ac.uk HorderJamiejamie.horder@kcl.ac.uk PrasherVerindervprasher@compuserve.com HanneyMaria-LuisaMarisa.Hanney@ntw.nhs.uk MorrisRobinrobin.morris@kcl.ac.uk LovestoneSimonsimon.lovestone@kcl.ac.uk MurphyCKierankmurphy@rcsi.ie SimmonsAndrewandy.simmons@kcl.ac.uk MurphyGMDeclandeclan.murphy@kcl.ac.uk

Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King’s College London, London, UK

Southern Health NHS Foundation Trust, North Hampshire Community Learning Disability Service, Winchester, Hampshire, UK

Greenfields Monyhull Hospital, Kings Norton, Birmingham, UK

Northumberland Tyne and Wear NHS Foundation Trust, Northgate Hospital, Morpeth, Northumberland, UK

Department of Psychology, Institute of Psychiatry, King’s College London, London, UK

Department of Old Age Psychiatry, Institute of Psychiatry, King’s College London, London, UK

Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland

Department of Neuroimaging, Institute of Psychiatry, King’s College London, London, UK

NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia, South London and Maudsley NHS Foundation Trust, London, UK

Journal of Neurodevelopmental Disorders 1866-1955 2014 6 1 42 http://www.jneurodevdisorders.com/content/6/1/42 10.1186/1866-1955-6-42
2472014411201427112014 2014Tan et al.; licensee BioMed Central Ltd.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Down syndrome Intellectual disability Alzheimer’s disease Dementia Magnetic resonance spectroscopy 1H MRS Hippocampus Glutamate-glutamine (Glx)

Abstract

Background

Down syndrome (DS), or trisomy 21, is one of the most common autosomal mutations. People with DS have intellectual disability (ID) and are at significantly increased risk of developing Alzheimer’s disease (AD). The biological associates of both ID and AD in DS are poorly understood, but glutamate has been proposed to play a key role. In non-DS populations, glutamate is essential to learning and memory and glutamate-mediated excitotoxicity has been implicated in AD. However, the concentration of hippocampal glutamate in DS individuals with and without dementia has not previously been directly investigated. Proton magnetic resonance spectroscopy (1H MRS) can be used to measure in vivo the concentrations of glutamate-glutamine (Glx). The objective of the current study was to examine the hippocampal Glx concentration in non-demented DS (DS-) and demented DS (DS+) individuals.

Methods

We examined 46 adults with DS (35 without dementia and 11 with dementia) and 39 healthy controls (HC) using 1H MRS and measured their hippocampal Glx concentrations.

Results

There was no significant difference in the hippocampal Glx concentration between DS+ and DS-, or between either of the DS groups and the healthy controls. Also, within DS, there was no significant correlation between hippocampal Glx concentration and measures of overall cognitive ability. Last, a sample size calculation based on the effect sizes from this study showed that it would have required 6,257 participants to provide 80% power to detect a significant difference between the groups which would indicate that there is a very low likelihood of a type 2 error accounting for the findings in this study.

Conclusions

Individuals with DS do not have clinically detectable differences in hippocampal Glx concentration. Other pathophysiological processes likely account for ID and AD in people with DS.

Background

Down syndrome (DS) is one of the most common chromosomal disorders and is caused by trisomy 21 or a translocation involving chromosome 21 1 . A prominent feature of DS is intellectual disability (ID) and there is an increased risk of developing Alzheimer’s disease (AD) 2 . For example, it has been estimated that the prevalence of AD in DS increases dramatically from 11% between ages 40 to 49 to as high as 77% between 60 and 69 3 4 5 .

The underlying cause(s) for both the ID and AD is likely to be multifactorial. For instance, it has been hypothesised that in the DS brain, the presence of an extra copy of the amyloid precursor protein (APP) gene (which is localised to chromosome 21) leads to abnormalities in amyloid precursor protein processing in neuronal membranes and subsequently to amyloid plaques and AD 6 . In addition, reduced levels of serotonin (5HT) and gamma-aminobutyric acid (GABA) have been observed in foetal DS brains 7 . Further, it has been reported that in a DS mouse model, the selective serotonin reuptake inhibitor fluoxetine normalises hippocampal neurogenesis and performance on a hippocampus-dependent memory task 8 —whereas excessive GABA-mediated inhibition impairs the induction of long-term potentiation (LTP) and memory processes in the same region 9 . We previously reported our findings of myo-inositol (mI), N-acetylaspartate (NAA), choline-containing compounds (Cho) and creatine and phosphocreatine (Cr + Pr) from the current study sample in an earlier paper which showed that adults with DS have a significantly increased hippocampal concentration of myo-inositol as compared to healthy controls 10 and that this is associated with reduced cognitive ability. Increased concentration of myo-inositol within individuals with DS may also be associated with increased risk for AD 11 . Hence, there is increasing evidence that a number of neurochemical systems likely contribute to the DS cognitive phenotype—but there have been relatively few studies on the putative role of glutamate within individuals with DS.

Normal cognitive function (including attention, learning, memory and executive processes) is supported by a number of neurotransmitters—central to which is the glutamatergic system 12 . Glutamate is the primary excitatory neurotransmitter in the brain and is involved in synaptic transmission, plasticity and excitotoxicity 13 . Enhanced glutamate release from presynaptic neurons and subsequent activation of postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) glutamate receptors are crucial for LTP 14 15 and successful performance of numerous higher cognitive functions—including memory and learning 16 17 . Also, it has been suggested that within the non-DS population, glutamate-mediated excitotoxicity contributes to the neurodegeneration and cognitive dysfunction typically observed in people with AD 18 19 20 21 .

The importance of this neurotransmitter pathway in non-DS people with AD is further supported by evidence from clinical trials in these populations which showed the efficacy of drugs that target glutamatergic neurotransmission. For example, it has been reported that memantine (an NMDA receptor antagonist) reduces hippocampal glutamate concentration 22 and improves the behavioural, cognitive and functional symptoms in people with AD 23 . Therefore, there is evidence that reduction in hippocampal glutamate concentrations is associated with improved cognitive function by modulating glutamatergic neurotransmission and reducing excitotoxicity in non-DS people with AD.

Further, murine models of DS suggest 1) that there is an imbalance between hippocampal inhibitory and excitatory inputs 9 24 , 2) there are changes in the levels of the glutamate transporter and vesicular glutamate transporter 1 (VGLUT1) 25 and 3) that there are impairments in signalling mechanisms downstream of the NMDA receptor 26 . Therefore, based on the above considered evidence, it is possible that abnormalities in glutamate metabolism may partly account for both the ID and increased risk for AD in people with DS.

There is initial indirect evidence (from studies of platelets and fibroblasts) that glutamate uptake may be significantly decreased in DS individuals 27 . There have also been a small number of postmortem studies. For instance, some have reported no difference in glutamine or glutamate concentration in the frontal lobes of foetal DS brains as compared to controls 7 . In contrast, some (but not all) autopsy studies of adult DS brains reported decreased glutamate levels in the hippocampus 28 or no differences in the temporal lobes 29 or frontal lobes 30 . These studies were important first steps—but postmortem studies have inherent (and significant) limitations for measuring glutamate, and this prior work was confounded by medication effects. Also, to date, there are few studies that have directly examined in vivo brain glutamate in DS.

Proton magnetic resonance spectroscopy

Proton magnetic resonance spectroscopy (1H MRS) can be used to measure brain concentrations of glutamate-glutamine (Glx), mI, NAA, Cho and Cr + PCr 31 32 . In excitatory neurotransmission, glutamate is released into the synaptic cleft and is then rapidly removed by uptake into astrocytes (where it is converted into glutamine) and subsequently transported back to the presynaptic neuron for reconversion to glutamate 33 34 . The Glx signal on 1H MRS can therefore be used as a measure for central glutamatergic neurotransmission—albeit without sufficient resolution to determine which particular component of the Glx cycle is abnormal.

There are only two prior 1H MRS studies of Glx in people with DS. These reported a significant decrease in Glx concentration within DS frontal lobe 35 —but no difference in the temporal lobe 36 . Those two studies were valuable first steps, but they only included children and did not examine brain regions most implicated in AD. Therefore, to explore the putative role that the glutamatergic neurotransmitter system plays in ID and risk of AD in DS, in vivo studies of adults are required.

The hippocampus may be of particular relevance in people with DS as its volume has been reported to be disproportionately reduced ( 37 38 and see review 39 ), and it is the brain region most vulnerable to the neuropathological changes of AD 40 41 . To the best of our knowledge, there are no studies to date that have evaluated the in vivo concentrations of hippocampal Glx in DS adults. Therefore, given the potential contributory role of abnormalities in glutamatergic neurotransmission to both ID and AD in people with DS, we investigated the hippocampal concentration of Glx in DS adults with (DS+) and without (DS-) dementia using 1H MRS.

Methods

Participants

We included 85 adults: 46 DS individuals (35 DS- and 11 DS+) and 39 healthy controls (Table  1). Individuals with DS were recruited from cohorts in London, Birmingham and Newcastle upon Tyne, England. Karyotyping was used to assess the DS status in all participants. Dementia status was assessed using International Statistical Classification of Diseases, 10th Revision research criteria 42 .

<p>Table 1</p>

Non-demented DS (DS-)

Demented DS (DS+)

Healthy controls (HC)

Significance

L left, R right, CAMCOG Cambridge Cognitive Examination, VOI volume of interest.

aChi-square.

bANOVA.

cANCOVA (covaried with age).

N = 85

n = 35

n = 11

n = 39

Demographics, mean (percent)

 Male no.

26 (74%)

6 (55%)

24 (62%)

p = 0.358a

 Age, mean (SD)

35 (12)

52 (6)

35 (12)

p < 0.001b

Cognitive measures

 CAMCOG (total) score

56 (22)

32 (21)

119 (3)

p < 0.001b

 CAMCOG (short-term memory) score

12 (7)

5 (4)

22 (2)

p < 0.001b

MRI VOI proportions

 Grey proportion (average R and L)

0.76 (0.07)

0.75 (0.11)

0.72 (0.08)

p = 0.187b

 White proportion (average R and L)

0.24 (0.07)

0.25 (0.11)

0.28 (0.08)

p = 0.187b

Mean CSF (R)

0.13 (0.07)

0.15 (0.04)

0.07 (0.04)

p = 0.000b

Mean CSF (L)

0.10 (0.07)

0.17 (0.09)

0.07 (0.04)

p = 0.006b

Mean metabolite concentration

 Glx (R hippocampus)

38.89 (6.13)

41.04 (4.16)

38.49 (7.03)

p = 0.309c

 Glx (L hippocampus)

36.51 (5.25)

36.56 (7.20)

36.59 (5.72)

p = 0.955c

 Glx (average of R and L)

38.14 (5.61)

38.41 (4.71)

37.57 (5.16)

p = 0.853c

Demographic, MRI and 1 H MRS characteristics by group

All participants underwent standard physical, neurological and psychiatric screening, including routine blood tests (e.g. renal and liver function tests, red blood cell count and thyroid function tests) and clinical magnetic resonance imaging. We excluded people with a clinically detectable physical or psychiatric disorder affecting brain function (e.g. hypertension), a known history of birth trauma or head injury, or with an abnormal clinical magnetic resonance image (for example, as indicated by the presence of significant white matter hyperintensities). None of the participants were taking psychotropic medication at the time of the study. The project was approved by Multi-Centre Research Ethics Committee (MREC) and Local Research Ethics Committees (LREC), and after complete description of the study to the participants and their identified carers, written informed consent was obtained from them or if this was not possible, assent was obtained from their identified carers.

1H MRS data acquisition and analysis

1H MRS protocol

The subjects were scanned using a 1.5 Tesla GE NV/i Signa MR System (General Electric, Milwaukee, WI, USA) at the Maudsley Hospital, London. 3D T1-weighted volume images were acquired in the axial plane with 1.5-mm contiguous sections using acquisition parameters chosen using a contrast simulation tool 43 . Repetition time (TR) was 13.8 ms, inversion time (TI) 450 ms, echo time (TE) 2.8 ms and the flip angle was 20° with one data average and a 256 × 256 × 124 voxel matrix. Acquisition time was 6 min, 27 s.

1H MRS voxels of interest measuring 20 × 20 × 15 mm3 (6 ml) were defined in standard locations in the left and right hippocampi using a previously published method 44 45 . We chose hippocampal regions of interest as they were of particular relevance in DS and one of the earliest sites of change in AD. The anterior location of the voxel was defined as the coronal slice where the amygdala disappeared, extending posteriorly 20 mm and so covering the bulk of the hippocampus (Figure  1). The hippocampal volume of interest contained both grey and white matter and included some superior medial portions of the parahippocampal gyrus and the posterior portion of the amygdala.

<p>Figure 1</p>

Coronal T1-weighted magnetic resonance image illustrating the location of the 1H MRS voxels in the left and right hippocampi.

Coronal T1-weighted magnetic resonance image illustrating the location of the 1 H MRS voxels in the left and right hippocampi.

A point resolved spectroscopy (PRESS) pulse sequence (TE 35 ms, TR 1500 ms, 256 data averages and 2,048 points) with automated shimming and water suppression and excellent reproducibility 46 was used to obtain spectra from each voxel after CHESS water suppression with high signal-to-noise ratio and clearly resolved NAA, Cho, mI, Cr + PCr and Glx peaks among other metabolites. Non-water-suppressed data were also collected for water referencing, but data was not collected to measure metabolite T1 and T2 relaxation times for individual subjects due to the limited tolerance of DS subjects for MRI scanning. Results are expressed as relaxation time corrected ratios to unsuppressed water. Not all subjects had spectral data from both left and right hippocampi. No significant differences were found in the metabolite content between the right and the left side of the hippocampus. Therefore, we averaged the metabolite measures from the left and right hippocampi from the subjects which had data from both hemispheres.

1H MRS data analysis

Differences in proportions of white and grey matter in the 1 H MRS voxels may confound group differences in metabolite concentrations. Thus, to ensure that differences in tissue composition did not account for metabolic differences between subject groups, we segmented the SPGR volumes using Statistical Parametric Mapping (SPM) software (http://www.fil.ion.ucl.ac.uk/spm) to determine the percentage of grey matter, white matter and CSF within the MRS voxels after quality control of the images as described previously 47 48 . The position of the 1 H MRS voxels relative to the segmented 3D dataset was determined automatically using an in-house software. T1 and T2 corrections were applied for each metabolite using literature values 49 .

Spectra were processed using LCModel 50 , and metabolite concentrations were automatically corrected for CSF contamination of the voxel by dividing by the tissue fraction of the MRS voxel determined using SPM. These corrected concentrations were then calibrated to absolute molar units with respect to a phantom of known concentration, which was scanned in the same scanning session as the subject, using a PRESS acquisition with the same TE and TR.

Cognitive assessment

Cognitive ability was measured using the Cambridge Cognitive Examination (CAMCOG) 51 52 . The CAMCOG has been validated for use with adults with DS 53 and provides a measure of general cognitive function, including measures of episodic memory (which is associated with hippocampal function), orientation, language, attention, praxis and executive function. The CAMCOG, developed originally to measure cognitive functioning in people with mild to moderate dementia, is less subject to floor effects and so found to be also appropriate for people with DS. For each participant, neuropsychological testing was completed within 6 months of scanning.

Statistical analysis

Statistical analysis was carried out using SPSS (SPSS 18.0 for Windows; SPSS Inc., Chicago, IL, USA). Comparisons between age and 1H MRS Glx concentrations between the groups were made using univariate general linear models (GLM). Differences in gender distribution were tested for using a chi-squared test. Group differences in Glx concentrations were tested with one-way analysis of variance (ANOVA), with group as the between-subject factor. There were no significant interactions between the side from which 1 H MRS Glx concentrations were measured (left or right hippocampus) or gender and group. To verify that voxel composition was not obscuring group differences, we performed an ANOVA with corrected Glx as the dependent variable, Group (DS-, DS+, HC) and Side (left vs. right) as a between-subject factor and covariates being voxel grey, white and CSF proportion. In this analysis, neither Group nor Group × Side were significant predictors of estimated Glx (p = 0.199 and p = 0.550) indicating that even controlling for voxel composition, there was no group difference in Glx in either left or right hippocampus. Therefore, mean hippocampal Glx concentrations were considered in the analysis with age used as a covariate.

For each of the groups, the relationship between hippocampal Glx concentrations and cognitive ability and memory (measured by the CAMCOG total and short-term memory scores) was examined using Pearson’s product–moment correlation. Level of statistical significance was defined as p < 0.05 (two tailed). Power calculations were performed using the mean Glx concentration differences between the groups in this study on G*Power version 3.1.5.

Results

The results are summarised in Table  1 and Figure  2. The DS+ group were older than both the DS- and healthy control groups. Therefore, age was added as a covariate in the analyses. As expected, the groups also differed in their CAMCOG (total cognition and short-term memory) scores—with the demented DS+ group having the lowest scores and the HC having the highest.

<p>Figure 2</p>

Scatter plot of average Glx concentrations of both hippocampi for all groups.

Scatter plot of average Glx concentrations of both hippocampi for all groups. No significant differences across groups (p = 0.853). Glx glutamate-glutamine, DS- non-demented Down syndrome subjects, DS+ demented Down syndrome subjects, HC healthy controls. Note: horizontal bars represent the means for each group.

Grey and white matter composition of the MRS voxels did not differ between the groups, although there were differences between the groups for CSF composition. Overall, we found no significance between group differences in Glx concentrations. Furthermore, there was no correlation between hippocampal Glx concentration and cognitive ability and memory as measured by the CAMCOG (total and short-term memory) scores in either of the DS groups (see Table  2).

<p>Table 2</p>

Non-demented DS (DS-)

Demented DS (DS+)

CAMCOG (total) score

r = 0.13 (p = 0.464)

r = -0.225 (p = 0.715)

CAMCOG (short-term memory) score

r = 0.123 (p = 0.497)

r = -0.296 (p = 0.569)

Correlation of cognitive measures with mean hippocampal Glx concentrations for each group

Due to our relatively small sample size of DS+, it is possible that we were underpowered to detect differences. Hence, we carried out a power analysis. This showed that it would have required 6,257 participants to provide 80% power to detect a significant difference in Glx between the groups at p < 0.05 which would indicate a very low likelihood of a type 2 error accounting for our findings.

Discussion

Hippocampal Glx in DS and when compared with the general population

We found no significant between-group differences in hippocampal Glx concentration. The Glx findings in our study are consistent with (and extends into demented individuals) 1) an earlier 1H MRS study of DS children that reported no differences in temporal lobe Glx concentration 36 and 2) postmortem studies of adult DS brains that had not detected any increase in temporal lobe glutamate 29 . Hence, our findings suggest that the hippocampal glutamatergic neurotransmitter system (at least as measured using Glx at 1.5 Tesla) is not significantly dysregulated in people with DS—and so is not the main cause for the ID (or AD) typically found in the disorder.

Other factors, therefore, most likely play a greater role. These may include dysregulation of acetylcholine (ACh) 54 , dopamine 55 , GABA 56 and serotonin (5-HT) 57 ; and/or brain metabolites such as mI 10 . ACh has long been known to be a critical mediator of learning and memory 58 , and cholinergic neurons are particularly affected in AD 54 . Dopamine 55 and GABA modulate memory, and drugs that act as inverse agonists at the GABA(A) receptor have shown promise in enhancing memory function 56 . mI is elevated in the hippocampus of DS- adults and is negatively correlated with their cognitive ability 10 and further increased in DS+ individuals 11 .

Hippocampal Glx in demented DS+ versus AD in the general population

In this study, we did not find any differences in hippocampal Glx concentration between DS+ individuals when compared to either their DS- counterparts or healthy controls. The DS+ group were significantly older than the DS- and HC groups.

To the best of our knowledge, there are no previous studies that have examined hippocampal Glx in people with DS and AD. Our findings (albeit in a limited sample) are consistent with some (but not all) 1H MRS studies of AD in the general population. For instance, some reported no differences in the Glx concentration of temporoparietal grey matter between AD individuals and healthy controls 59 , whereas others reported decreased glutamate in the right hippocampus 60 . Thus, the hippocampal metabolic changes in people with DS and AD may differ from those of non-DS people with AD.

However, our initial evidence taken together with the work of others suggests that the situation may be different in people with DS. For instance, two recent randomised double-blind placebo-controlled trials which investigated the efficacy of memantine in DS people found limited effect of treatment with memantine on cognitive or functional outcomes. Boada et al. compared the effect of 16-week treatment with either memantine or placebo on cognitive and adaptive functions of 40 young adults with DS and found no significant differences between the memantine and placebo groups on the two primary outcome measures involving episodic memory 61 . In the study by Hanney et al. which compared adults with DS with and without dementia and involved 88 patients receiving memantine and 85 patients receiving placebo showed that both groups declined in cognitive and functional ability but rates did not differ between groups for any cognitive or functional outcomes at 52 weeks of treatment 62 . Therefore, in people with DS, dysregulation of glutamatergic neurotransmission and related glutamate-mediated excitotoxicity may not be the major pathway for the development of either ID or AD. This has implications for the development of new treatments.

Various risk factors and hypotheses for the pathogenesis of AD in DS have been proposed 63 including the role of β-amyloid accumulation in the DS brain 6 . However, a recent in vivo study using positron emission tomography (PET) showed that DS- individuals have comparable concentrations of β-amyloid in the brain as compared with non-DS people with AD 64 and would suggest that there are factors other than β-amyloid loading which are important for the development of AD in people with DS.

These other factors may include apolipoprotein E ϵ4 allele 65 , extended tau haplotype 66 , dual-specificity tyrosine-regulated kinase 1A (DYRK1A) and calcipressin 67 , tetranucleotide repeat in intron 7 of the APP 68 , estradiol 69 , Cu/Zn superoxide dismutase (SOD1) 70 , neuroinflammation 71 and serotonergic dysfunction 8 72 . In particular, mI which has been associated with dementia in the general population 73 and may also have particular relevance in people with DS as the Na+/myo-inositol co-transporter gene (SCL5A3) located on chromosome 21 74 has been shown in our previous work to be increased in the hippocampus of DS- 10 and further increased in DS+ 11 may point to a potential role of mI in the cascade of events that lead to AD in people with DS.

Limitations

Our study had a relatively small sample size, and we included relatively few demented DS+ participants. However, due to the small differences between the groups, it would have required an unrealistically large number of participants in the study to show an effect. A sample size calculation based on the effect sizes from this study showed that it would have required 6,257 participants to provide 80% power to detect a significant difference between the groups. People with DS are a difficult population to recruit to studies, and they all have ID and can have difficulty tolerating the demands of the scanning procedure and cognitive assessments. Furthermore, the participants in our study were not medicated or sedated prior to their brain scans to facilitate the scan procedure.

The study was conducted at relatively low field strength (1.5 T), and glutamate was expressed as Glx rather than as glutamate and glutamine separately. Glutamate, glutamine and GABA exist in a metabolite shuttle known as the glutamate/GABA-glutamine cycle. Measuring Glx on its own may not have detected changes in the metabolite shuttle as GABA could not be accurately measured at low field strength. It is possible that Glx metabolite changes may have occurred in brain regions that were not examined in this study, but the hippocampus was chosen due to its known involvement in memory and early involvement in AD. We did not examine other brain regions critical to higher cognitive function owing to limitations in patient compliance and time constraints. Despite that, we managed to scan a sizeable number of non-demented DS participants in this study and did not find any differences in Glx concentration compared to healthy controls. We have previously reported differences in myo-inositol concentration in a similar number of participants which would indicate that even if there were differences in Glx concentrations between the groups, these differences are much less pronounced than those affecting myo-inositol.

Future studies involving larger numbers of DS+ participants, using higher field strength 1H MRS and using multi-voxel 1H MRS approaches will allow better spectral segregation of glutamate and glutamine and measurement of GABA as well as the examination of other regions of the brain critical to higher cognitive function.

Conclusions

We found no evidence that DS individuals (with or without dementia) have significant dysregulation of glutamatergic neurotransmission. Other factors may be more crucial in the development of both ID and AD in people with DS.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

FB, VP and MH were involved in recruitment to the study. FB, ED and AS were involved in data acquisition and image analysis. RM, SL, KM, AS and DM were involved in the study conception and design. GT, JH, AS and DM were involved in data interpretation. GT drafted the manuscript, and AS and DM edited the manuscript. DM supervised the whole project. All authors read and approved the final manuscript.

Acknowledgements

This project was generously supported by the South London and Maudsley National Health Service (NHS) Foundation Trust (National Division), the Baily Thomas Charitable Fund, the Sackler Institute for Neurodevelopmental Translational Research, the NIHR Biomedical Research Centre and NIHR Biomedical Research Unit for Dementia at the South London and Maudsley NHS Foundation Trust, and Institute of Psychiatry, King’s College London. We especially thank the individuals with Down syndrome and their families and carers for taking part in the study.

<p>Down syndrome children often have brain with maturation delay, retardation of growth, and cortical dysgenesis</p>WisniewskiKEAm J Med Genet Suppl199072742812149962<p>Genetic and host factors for dementia in Down’s syndrome</p>SchupfNSergievskyGHBr J Psychiatry200218040541010.1192/bjp.180.5.40511983636<p>Prospective study of the prevalence of Alzheimer-type dementia in institutionalized individuals with Down syndrome</p>VisserFEAldenkampAPvan HuffelenACKuilmanMOverwegJvan WijkJAm J Ment Retard19971014004129017086<p>Fifteen-year follow-up of 92 hospitalized adults with Down’s syndrome: incidence of cognitive decline, its relationship to age and neuropathology</p>Margallo-LanaMLMoorePBKayDWPerryRHReidBEBerneyTPTyrerSPJ Intellect Disabil Res20075146347710.1111/j.1365-2788.2006.00902.x17493029<p>Dementia in intellectual disability</p>SheehanRAliAHassiotisACurr Opin Psychiatry20142714314810.1097/YCO.000000000000003224406638<p>Molecular mapping of Alzheimer-type dementia in Down’s syndrome</p>PrasherVPFarrerMJKesslingAMFisherEMWestRJBarberPCButlerACAnn Neurol19984338038310.1002/ana.4104303169506555<p>Fetal Down syndrome brains exhibit aberrant levels of neurotransmitters critical for normal brain development</p>WhittleNSartoriSBDierssenMLubecGSingewaldNPediatrics2007120e1465e147110.1542/peds.2006-344817998315<p>Early pharmacotherapy restores neurogenesis and cognitive performance in the Ts65Dn mouse model for Down syndrome</p>BianchiPCianiEGuidiSTrazziSFeliceDGrossiGFernandezMGiulianiACalzaLBartesaghiRJ Neurosci2010308769877910.1523/JNEUROSCI.0534-10.201020592198<p>Synaptic structural abnormalities in the Ts65Dn mouse model of Down syndrome</p>BelichenkoPVMasliahEKleschevnikovAMVillarAJEpsteinCJSalehiAMobleyWCJ Comp Neurol200448028129810.1002/cne.2033715515178<p>Hippocampal myo-inositol and cognitive ability in adults with Down syndrome: an <it>in vivo</it> proton magnetic resonance spectroscopy study</p>BeacherFSimmonsADalyEPrasherVAdamsCMargallo-LanaMLMorrisRLovestoneSMurphyKMurphyDGArch Gen Psychiatry2005621360136510.1001/archpsyc.62.12.136016330724<p>Down syndrome with and without dementia: an <it>in vivo</it> proton magnetic resonance spectroscopy study with implications for Alzheimer’s disease</p>LamarMFoyCMBeacherFDalyEPoppeMArcherNPrasherVMurphyKCMorrisRGSimmonsALovestoneSMurphyDGNeuroimage201157636810.1016/j.neuroimage.2011.03.07321504795<p>Behavioural pharmacology: 40+ years of progress, with a focus on glutamate receptors and cognition</p>RobbinsTWMurphyERTrends Pharmacol Sci20062714114810.1016/j.tips.2006.01.0091867319,186731916490260<p>NMDA receptor subunits: diversity, development and disease</p>Cull-CandySBrickleySFarrantMCurr Opin Neurobiol20011132733510.1016/S0959-4388(00)00215-411399431<p>Fear conditioning induces a lasting potentiation of synaptic currents <it>in vitro</it></p>McKernanMGShinnick-GallagherPNature199739060761110.1038/376059403689<p>AMPA receptor facilitation accelerates fear learning without altering the level of conditioned fear acquired</p>RoganMTStaubliUVLeDouxJEJ Neurosci199717592859359221789<p>Alzheimer’s disease and the glutamate NMDA receptor</p>DoraiswamyPMPsychopharmacol Bull200337414914566213<p>NMDA receptors: from genes to channels</p>SucherNJAwobuluyiMChoiYBLiptonSATrends Pharmacol Sci19961734835510.1016/S0165-6147(96)10046-88979769<p>Cortical pyramidal neurone loss may cause glutamatergic hypoactivity and cognitive impairment in Alzheimer’s disease: investigative and therapeutic perspectives</p>FrancisPTSimsNRProcterAWBowenDMJ Neurochem1993601589160410.1111/j.1471-4159.1993.tb13381.x8473885<p>The interplay of neurotransmitters in Alzheimer’s disease</p>FrancisPTCNS Spectrosc20051069<p>Therapeutic opportunities in Alzheimer disease: one for all or all for one?</p>MarlattMWWebberKMMoreiraPILeeHGCasadesusGHondaKZhuXPerryGSmithMACurr Med Chem2005121137114710.2174/092986705376464415892629<p>Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults</p>LiptonSANeuroRx2004110111010.1602/neurorx.1.1.10153491515717010<p>Memantine decreases hippocampal glutamate levels: a magnetic resonance spectroscopy study</p>GlodzikLKingKGGonenOLiuSDe SantiSde LeonMJProg Neuropsychopharmacol Biol Psychiatry2008321005101210.1016/j.pnpbp.2008.01.016278955418343551<p>Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial</p>TariotPNFarlowMRGrossbergGTGrahamSMMcDonaldSGergelIJAMA200429131732410.1001/jama.291.3.31714734594<p>Synaptic deficit in the temporal cortex of partial trisomy 16 (Ts65Dn) mice</p>KurtMADaviesDCKiddMDierssenMFlorezJBrain Res200085819119710.1016/S0006-8993(00)01984-310700614<p>Enhanced anxiety, depressive-like behaviour and impaired recognition memory in mice with reduced expression of the vesicular glutamate transporter 1 (VGLUT1)</p>TorderaRMTotterdellSWojcikSMBroseNElizaldeNLasherasBDel RioJEur J Neurosci20072528129010.1111/j.1460-9568.2006.05259.x17241289<p>Altered signaling pathways underlying abnormal hippocampal synaptic plasticity in the Ts65Dn mouse model of Down syndrome</p>SiareyRJKline-BurgessAChoMBalboABestTKHarashimaCKlannEGaldzickiZJ Neurochem2006981266127710.1111/j.1471-4159.2006.03971.x16895585<p>Altered glutamate uptake in peripheral tissues from Down syndrome patients</p>BegniBBrighinaLFumagalliLAndreoniSCastelliEFrancesconiCDel BoRBresolinNFerrareseCNeurosci Lett2003343737610.1016/S0304-3940(03)00260-X12759167<p>Amino acid neurotransmitter deficits in adult Down’s syndrome brain tissue</p>ReynoldsGPWarnerCENeurosci Lett19889422422710.1016/0304-3940(88)90299-62907377<p>Differences between GABA levels in Alzheimer’s disease and Down syndrome with Alzheimer-like neuropathology</p>SeidlRCairnsNSingewaldNKaehlerSTLubecGNaunyn Schmiedebergs Arch Pharmacol200136313914510.1007/s00210000034611218066<p>Excitatory amino acids and monoamines in parahippocampal gyrus and frontal cortical pole of adults with Down syndrome</p>RisserDLubecGCairnsNHerrera-MarschitzMLife Sci1997601231123710.1016/S0024-3205(97)00067-29096240<p>A review of chemical issues in 1H NMR spectroscopy: N-acetyl-L-aspartate, creatine and choline</p>MillerBLNMR Biomed19914475210.1002/nbm.1940040203<p>Inhibition of N-acetylaspartate production: implications for 1H MRS studies <it>in vivo</it></p>BatesTEStrangwardMKeelanJDaveyGPMunroPMClarkJBNeuroreport199671397140010.1097/00001756-199605310-000148856684<p>Magnetic resonance spectroscopy of neurotransmitters in human brain</p>NovotnyEJJrFulbrightRKPearlPLGibsonKMRothmanDLAnn Neurol200354Suppl 6S25S3112891651<p>The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer</p>BakLKSchousboeAWaagepetersenHSJ Neurochem20069864165310.1111/j.1471-4159.2006.03913.x16787421<p>Brain metabolic profile obtained by proton magnetic resonance spectroscopy HMRS in children with Down syndrome</p>Smigielska-KuziaJSobaniecWAdv Med Sci200752Suppl 118318718229661<p>Amino acid metabolic processes in the temporal lobes assessed by proton magnetic resonance spectroscopy (1H MRS) in children with Down syndrome</p>Smigielska-KuziaJBockowskiLSobaniecWKulakWSendrowskiKPharmacol Rep2010621070107710.1016/S1734-1140(10)70369-821273664<p>MRI volumes of the hippocampus and amygdala in adults with Down’s syndrome with and without dementia</p>AylwardEHLiQHoneycuttNAWarrenACPulsiferMBBartaPEChanMDSmithPDJerramMPearlsonGDAm J Psychiatry199915656456810200735<p>Alzheimer’s disease and Down’s syndrome: an <it>in vivo</it> MRI study</p>BeacherFDalyESimmonsAPrasherVMorrisRRobinsonCLovestoneSMurphyKMurphyDGPsychol Med20093967568410.1017/S003329170800405418667098<p>Brain MRI findings in down syndrome and dementia</p>TanGMYMurphyDGMMed Men Geist Mehrf Beh201183038<p>Neurofibrillary tangles, granulovacuolar degeneration, and neuron loss in down syndrome: quantitative comparison with Alzheimer dementia</p>BallMJNuttallKAnn Neurol1980746246510.1002/ana.4100705126446875<p>Morphological criteria for the recognition of Alzheimer’s disease and the distribution pattern of cortical changes related to this disorder</p>BraakHBraakENeurobiol Aging199415355356discussion 379–38010.1016/0197-4580(94)90032-97936061WHOThe ICD-10 Classification of Mental and Behavioural Disorders. Clinical Descriptions and Diagnostic GuidelinesGeneva: World Health Organization1992<p>Simulation of MRI cluster plots and application to neurological segmentation</p>SimmonsAArridgeSRBarkerGJWilliamsSCMagn Reson Imaging199614739210.1016/0730-725X(95)02040-Z8656992<p>Effects of estrogen replacement therapy on human brain aging: an <it>in vivo</it> 1H MRS study</p>RobertsonDMvan AmelsvoortTDalyESimmonsAWhiteheadMMorrisRGMurphyKCMurphyDGNeurology2001572114211710.1212/WNL.57.11.211411739837<p>Influence of X chromosome and hormones on human brain development: a magnetic resonance imaging and proton magnetic resonance spectroscopy study of Turner syndrome</p>CutterWJDalyEMRobertsonDMChitnisXAvan AmelsvoortTASimmonsANgVWWilliamsBSShawPConwayGSSkuseDHCollierDACraigMMurphyDGBiol Psychiatry20065927328310.1016/j.biopsych.2005.06.02616139817<p>Serial precision of metabolite peak area ratios and water referenced metabolite peak areas in proton MR spectroscopy of the human brain</p>SimmonsASmailMMooreEWilliamsSCMagn Reson Imaging19981631933010.1016/S0730-725X(97)00280-49621973<p>MRI measures of Alzheimer’s disease and the AddNeuroMed study</p>SimmonsAWestmanEMuehlboeckSMecocciPVellasBTsolakiMKloszewskaIWahlundLOSoininenHLovestoneSEvansASpengerCAnn N Y Acad Sci20091180475510.1111/j.1749-6632.2009.05063.x19906260<p>The AddNeuroMed framework for multi-centre MRI assessment of Alzheimer’s disease: experience from the first 24 months</p>SimmonsAWestmanEMuehlboeckSMecocciPVellasBTsolakiMKloszewskaIWahlundLOSoininenHLovestoneSEvansASpengerCInt J Geriatr Psychiatry201126758210.1002/gps.249121157852<p>The concentration of N-acetyl aspartate, creatine + phosphocreatine, and choline in different parts of the brain in adulthood and senium</p>ChristiansenPToftPLarssonHBStubgaardMHenriksenOMagn Reson Imaging19931179980610.1016/0730-725X(93)90197-L8371635<p>Estimation of metabolite concentrations from localized <it>in vivo</it> proton NMR spectra</p>ProvencherSWMagn Reson Med19933067267910.1002/mrm.19103006048139448<p>CAMCOG–a concise neuropsychological test to assist dementia diagnosis: socio-demographic determinants in an elderly population sample</p>HuppertFABrayneCGillCPaykelESBeardsallLBr J Clin Psychol199534Pt 45295418563660RothMHuppertFAMountjoyCQTymEThe Revised Cambridge Examination for Mental Disorders of the ElderlyCambridge: Cambridge University Press1998<p>Neuropsychological assessment of older adults with Down’s syndrome: an epidemiological study using the Cambridge Cognitive Examination (CAMCOG)</p>HonJHuppertFAHollandAJWatsonPBr J Clin Psychol199938Pt 215516510389597<p>Acetylcholine, aging, and Alzheimer’s disease</p>MuirJLPharmacol Biochem Behav19975668769610.1016/S0091-3057(96)00431-59130295<p>Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys</p>ArnstenAFCaiJXMurphyBLGoldman-RakicPSPsychopharmacology (Berl)199411614315110.1007/BF022450567862943<p>RO4938581, a novel cognitive enhancer acting at GABAA alpha5 subunit-containing receptors</p>BallardTMKnoflachFPrinssenEBorroniEVivianJABasileJGasserRMoreauJLWettsteinJGBuettelmannBKnustHThomasAWTrubeGHernandezMCPsychopharmacology (Berl)200920220722310.1007/s00213-008-1357-718936916<p>Role of serotonin in memory impairment</p>BuhotMCMartinSSeguLAnn Med20003221022110.3109/0785389000899882810821328<p>Memory and cognitive function in man: does the cholinergic system have a specific role?</p>DrachmanDANeurology19772778379010.1212/WNL.27.8.783560649<p>Frontotemporal dementia and early Alzheimer disease: differentiation with frontal lobe H-1 MR spectroscopy</p>ErnstTChangLMelchorRMehringerCMRadiology199720382983610.1148/radiology.203.3.91697129169712<p>Reduced hippocampal glutamate in Alzheimer disease</p>RupsinghRBorrieMSmithMWellsJLBarthaRNeurobiol Aging20113280281010.1016/j.neurobiolaging.2009.05.00219501936<p>Antagonism of NMDA receptors as a potential treatment for Down syndrome: a pilot randomized controlled trial</p>BoadaRHutaff-LeeCSchraderAWeitzenkampDBenkeTAGoldsonEJCostaACTransl Psychiatry20122e14110.1038/tp.2012.66341098822806212<p>Memantine for dementia in adults older than 40 years with Down’s syndrome (MEADOWS): a randomised, double-blind, placebo-controlled trial</p>HanneyMPrasherVWilliamsNJonesELAarslandDCorbettALawrenceDYuLMTyrerSFrancisPTJohnsonTBullockRBallardCLancet201237952853610.1016/S0140-6736(11)61676-022236802<p>Down syndrome: genetic and clinical overlap with dementia</p>TanGMYMurphyDGMPrinciples and Practice of Geriatric PsychiatryNew York: WileyAbou-Saleh MM, Katona CLE, Kumar A32011281286<p>Positron emission tomography of brain {beta}-amyloid and tau levels in adults with Down syndrome</p>NelsonLDSiddarthPKepeVScheibelKEHuangSCBarrioJRSmallGWArch Neurol201168768774326161321670401<p>The impact of apolipoprotein E on dementia in persons with Down’s syndrome</p>CoppusAMEvenhuisHMVerberneGJVisserFEArias-VasquezASayed-TabatabaeiFAVergeer-DropJEikelenboomPvan GoolWAvan DuijnCMCoppusAMWNeurobiol Aging20082982883510.1016/j.neurobiolaging.2006.12.01317250929<p>The extended tau haplotype and the age of onset of dementia in Down syndrome</p>JonesELMargallo-LanaMPrasherVPBallardCGDement Geriatr Cogn Disord20082619920210.1159/00015204418765933<p>The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between beta-amyloid production and tau phosphorylation in Alzheimer disease</p>KimuraRKaminoKYamamotoMNuripaAKidaTKazuiHHashimotoRTanakaTKudoTYamagataHTabaraYMikiTAkatsuHKosakaKFunakoshiENishitomiKSakaguchiGKatoAHattoriHUemaTTakedaMHum Mol Genet200716152317135279<p>Influence of the amyloid precursor protein locus on dementia in Down syndrome</p>Margallo-LanaMMorrisCMGibsonAMTanALKayDWTyrerSPMooreBPBallardCGKayDWKNeurology2004621996199810.1212/01.WNL.0000129275.13169.BE15184603<p>Bioavailable estradiol and age at onset of Alzheimer’s disease in postmenopausal women with Down syndrome</p>SchupfNWinstenSPatelBPangDFerinMZigmanWBSilvermanWMayeuxRNeurosci Lett200640629830210.1016/j.neulet.2006.07.06216926067<p>Risk factors for dementia in people with Down syndrome: issues in assessment and diagnosis</p>BushABeailNAm J Ment Retard2004109839710.1352/0895-8017(2004)109<83:RFFDIP>2.0.CO;215000668<p>Chemokines and pro-inflammatory cytokines in Down’s syndrome: an early marker for Alzheimer-type dementia?</p>CartaMGSerraPGhianiAMancaEHardoyMCDel GiaccoGSDiazGCarpinielloBManconiPEPsychother Psychosom20027123323610.1159/00006364912097789<p>Serotonin and brain development: role in human developmental diseases</p>Whitaker-AzmitiaPMBrain Res Bull20015647948510.1016/S0361-9230(01)00615-311750793<p>Short echo time proton magnetic resonance spectroscopy in Alzheimer’s disease: a longitudinal multiple time point study</p>SchottJMFrostCMacManusDGIbrahimFWaldmanADFoxNCBrain20101333315332210.1093/brain/awq208296542220739347<p>The human osmoregulatory Na+/myo-inositol cotransporter gene (SLC5A3): molecular cloning and localization to chromosome 21</p>BerryGTMalleeJJKwonHMRimJSMullaWRMuenkeMSpinnerNBGenomics19952550751310.1016/0888-7543(95)80052-N7789985