Are boys and girls that different? An analysis of traumatic brain injury in children

Niamh C Collins,1 Michal Molcho,2 Peter Carney,3 Linda McEvoy,4 Lourda Geoghegan,5 Jack P Phillips,4 Alf J Nicholson6

ABSTRACT

Introduction The Phillips Report on traumatic brain injury (TBI) in Ireland found that injury was more frequent in men and that gender differences were present in childhood. This study determined when gender differences emerge and examined the effect of gender on the mechanism of injury, injury type and severity and outcome.

Methods A national prospective, observational study was conducted over a 2-year period. All patients under 17 years of age referred to a neurosurgical service following TBI were included. Data on patient demographics, events surrounding injury, injury type and severity, patient management and outcome were collected from 'on-call' logbooks and neurosurgical admissions records.

Results 342 patients were included. Falls were the leading cause of injury for both sexes. Boys’ injuries tended to involve greater energy transfer and involved more risk-prone behaviour resulting in a higher rate of other (non-brain) injury and a higher mortality rate. Intentional injury occurred only in boys. While injury severity was similar for boys and girls, significant gender differences in injury type were present; extradural haematomas were significantly higher in boys (p=0.014) and subdural haematomas were significantly higher in girls (p=0.011). Mortality was 1.8% for girls and 4.3% for boys.

Conclusions Falls were responsible for most TBI, the home is the most common place of injury and non-operable TBI was common. These findings relate to all children. Significant gender differences exist from infancy. Boys sustained injuries associated with a greater energy transfer, were less likely to use protective devices and more likely to be injured deliberately. This results in a different pattern of injury, higher levels of associated injury and a higher mortality rate.

INTRODUCTION

In industrialised countries injury is the leading cause of death in childhood, accounting for 40% of all childhood deaths between the ages of 1 and 14 years.1 In the EU, every day 14 children die. 2240 are admitted to a hospital and 28 000 attend an emergency department as a result of injury.2

METHODS

Data on TBI were collected from all patients referred to the two NSU in the Republic of Ireland; the national neurosurgical centre in Beaumont Hospital, Dublin and the NSU in Cork University Hospital, Cork. Prospective data were collected over a 24-month period from April 2002 to April 2004 from Beaumont Hospital and over a 12-month period from November 2003 to November 2004 from Cork University Hospital.

Referrals to the neurosurgical service were initially made by telephone to the ‘on-call’ team and CT images were electronically linked. The case and imaging were reviewed and a decision was made either to transfer the patient to the neurosurgical centre for admission or to treat the patient in the referring hospital with management advice. Data were collected by members of the TBI research group from the NSU admissions records and from the ‘on-all’ telephone logbooks, inputted onto a Microsoft EXCEL database and analysed using Stata.9 10 Preliminary results on the adult population revealed large gender variations.7 This paper presents further statistical analysis of the paediatric data examining gender differences in TBI.

Statistical analysis was largely descriptive and tests of significance were performed when appropriate.
RESULTS

There were 2095 patients registered on the TBI database, of which 342 patients were under 17 years of age and were included in this study. Of these, 235 (69%) were boys. The mean age was 7.6 years, the median age was 8 years (95% CI 6 to 8 years).

Gender differences in incidence began in infancy, persisted and widened into adolescence. The age–gender distribution is shown in figure 1.

Falls were the leading cause of TBI in children (56% in total) with higher rates in girls (66%) than boys (51%). Boys were more likely to be injured on the roads (30% of all boys injured) or by being struck by or against an object (17% of all boys’ injuries). These gender differences are statistically significant (p<0.005, Mann–Whitney U test) and are shown in figure 2.

Falls
Over half (56%) of TBI sustained by children was as a result of a fall. Girls were statistically more likely to sustain a TBI by falling than boys (66% vs 51%, p=0.005). Boys were more likely to fall from a height than girls (p=0.024); 27 boys (29%) fell more than 2 m or 10 steps compared with seven girls (12%). There was no statistically significant gender difference in the type of surface (hard or soft) that the children fell onto (p=0.52), nor in injury severity (p=0.69). Boys were more likely to sustain other injuries associated with the fall; five boys who fell more than 2 m had other injuries, while there were no documented significant other injuries among the injured girls. The numbers involved were small and did not reach statistical significance (p=0.052). Mortality after falling (for children admitted to a NSU) was higher for boys but the number of fatalities was too low to calculate statistical significance (five boys and one girl died following a fall). Our data underestimate mortality, as deaths occurring outside either NSU were not recorded.

Road users
While there was no significant gender difference in the mechanism of road injury, there was a significant difference in the use of protective devices and risk behaviour between boys and girls. Overall, girls were statistically more likely to be secured using an age-appropriate restraint in a car than boys (Mann–Whitney U test p<0.05); eight out of nine girls and five out of 18 boys wore an age-appropriate restraint in a vehicle (table 1). No medical notes recorded any child cyclist wearing a helmet; however, nine cyclists were documented to have had no helmet at the time of injury; eight were boys and the other was a girl.

Circumstances
The home was the most frequent location of injury; half the girls and over one-third of boys were injured there (table 2). Overall, gender differences were found in relation to the location or circumstance of the injury (p<0.05), with girls being significantly more likely to be injured at home (p<0.02) and boys being injured more during ‘other’ activities (p<0.05) or in ‘unknown’ circumstances (p<0.05).

Intent
No girl was intentionally injured. Ten boys (4%) were intentionally injured by another person; one infant (<1 year), two children (5–12 years) and seven adolescents (13–16 years). All intentional injuries were caused by striking either with or against an object. Eight of the boys assaulted had an initial Glasgow coma scale (GSC) score between 13 and 15, while the remaining two boys sustained a more severe injury (GCS 3–8). The less severely injured boys sustained cerebral contusions (four), skull fractures (three), extradural haemorrhage (EDH) (two) and an intracerebral bleed. The more severely injured boys had a subdural haemorrhage (SDH), a subarachnoid haemorrhage and cerebral contusions. There was no documented use of alcohol or drugs.
EDH occurred in the home. Against an object (23%). Almost half the falls causing SDH and falls (51%), road collisions (26%) and being either struck by or against an object (23%) were boys. Fewer girls were struck by or against an object (8%) and collisions (13%) whereas boys are more likely to fall from height compared to girls. Boys were also more likely to be injured deliberately. This results in a different pattern of injury, with potentially higher levels of associated injury and mortality.

Injury pattern

There were significant gender differences in injury pattern (table 3), with boys statistically more likely to sustain an extradural haematoma (p=0.012) and girls more likely to sustain a subdural haematoma (p=0.014). Skull fractures, cerebral contusions, subarachnoid haemorrhage and intracerebral bleeds did not show any gender variation. Two-thirds (28 out of 42) of the patients with an EDH had a skull fracture. The major mechanism of injury for girls sustaining a SDH was falls less than 2 m (table 4), while EDH in boys were caused by a mix of falls (51%), road collisions (26%) and being either struck by or against an object (23%). Almost half the falls causing SDH and EDH occurred in the home.

Outcome

Twelve of the 174 patients admitted to a NSU died during their stay there. Deaths outside the NSU and deaths for patients treated in the referring hospital were not recorded. The NSU mortality rate was 7% but when gender was considered this changed to 9% (10 out of 117) and 4% (two out of 57) for boys and girls, respectively, but did not reach statistical significance (p=0.22).

Discussion

The aim of this study was to identify gender differences in paediatric TBI. The key findings of the study are that falls are responsible for the majority of TBI in children. A higher proportion of TBI in girls was caused by a fall. The home is the most frequent location of injury for both sexes. Significant gender differences exist, are evident from an early age, and are present throughout childhood and adolescence. Boys sustain injuries associated with a greater energy transfer (falls greater than 2 m), are less likely to use protective devices and are more likely to be injured deliberately. This results in a different pattern of injury, with potentially higher levels of associated injury and mortality.

Road-related injuries and falls are the main causes of severe trauma in children, with head injuries being the main cause of death. Our findings suggest that while falls occur more frequently in girls; boys’ falls tend to be more severe. This finding is supported by the differences in fall mechanism, with boys more likely to fall from height compared to girls. Similarly, more boys who were admitted with TBI were injured in a motor collision compared to girls, with a much higher proportion of boys across the age groups not using appropriate restraints. Some studies have previously addressed gender differences in risk perception, some specifically in relation to traffic. Our findings demonstrate that inappropriate restraint is evident at a much earlier age, a time when guardians are responsible for ensuring the safety of child passengers. Graine has demonstrated that gender differences in obeying rules in adolescence are very much determined by perceived sex stereotypes more than the biological sex. However, our findings suggest that such stereotypes may exist in guardians, who may be more tolerant (or even encouraging) towards risk-prone

Table 1 Road injury variations by gender

<table>
<thead>
<tr>
<th>Circumstance</th>
<th>Boys</th>
<th>Girls</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedal cyclist</td>
<td>26 (32%)</td>
<td>8 (37%)</td>
<td>34 (36%)</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>21 (24%)</td>
<td>6 (30%)</td>
<td>27 (28.5%)</td>
</tr>
<tr>
<td>MVC</td>
<td>18 (38%)</td>
<td>9 (26%)</td>
<td>27 (28.5%)</td>
</tr>
<tr>
<td>Age-appropriate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>restraint not worn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age <1 year</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Age 1–4 years</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Age 5–12 years</td>
<td>5</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Age 13–16 years</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Motorcycle collision</td>
<td>5 (8%)</td>
<td>2 (7%)</td>
<td>7 (7%)</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td>25</td>
<td>95</td>
</tr>
</tbody>
</table>

MVC, motor vehicle collision.

Table 2 Circumstance of injury

<table>
<thead>
<tr>
<th>Circumstance</th>
<th>Girls</th>
<th>Boys</th>
<th>p Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>53 (50%)</td>
<td>84 (36%)</td>
<td>p < 0.02</td>
</tr>
<tr>
<td>Sport</td>
<td>9 (8%)</td>
<td>27 (11%)</td>
<td>p > 0.1</td>
</tr>
<tr>
<td>Commuting</td>
<td>10 (9%)</td>
<td>26 (11%)</td>
<td>p > 0.1</td>
</tr>
<tr>
<td>Recreation</td>
<td>13 (12%)</td>
<td>15 (6%)</td>
<td>p < 0.05</td>
</tr>
<tr>
<td>Other†</td>
<td>4 (4%)</td>
<td>24 (10%)</td>
<td>p < 0.05</td>
</tr>
<tr>
<td>Education</td>
<td>5 (5%)</td>
<td>7 (3%)</td>
<td>N/A</td>
</tr>
<tr>
<td>Occupation/industry</td>
<td>1 (1%)</td>
<td>4 (2%)</td>
<td>N/A</td>
</tr>
<tr>
<td>Unknown</td>
<td>12 (11%)</td>
<td>48 (20%)</td>
<td>p < 0.05</td>
</tr>
<tr>
<td>Total</td>
<td>107</td>
<td>235</td>
<td>p < 0.05</td>
</tr>
</tbody>
</table>

*Values were calculated for all circumstances and individual circumstances. The number of children injured in education and occupation were too low for meaningful analysis.
†Other includes the categories ’struck by or against’ and known, but unclassifiable circumstances.

Table 3 Pattern of traumatic brain injury sustained by gender (n=342)

<table>
<thead>
<tr>
<th>Brain injury pattern</th>
<th>Total</th>
<th>Boys</th>
<th>Girls</th>
<th>Mann–Whitney U test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extradural haematoma</td>
<td>42</td>
<td>36</td>
<td>6</td>
<td>p=0.014</td>
</tr>
<tr>
<td>Subdural haematoma</td>
<td>22</td>
<td>10</td>
<td>12</td>
<td>p=0.011</td>
</tr>
<tr>
<td>Subarachnoid haemorrhage</td>
<td>25</td>
<td>18</td>
<td>7</td>
<td>p=0.78</td>
</tr>
<tr>
<td>Intracerebral bleed</td>
<td>20</td>
<td>14</td>
<td>6</td>
<td>p=0.97</td>
</tr>
<tr>
<td>Cerebral contusion</td>
<td>132</td>
<td>95</td>
<td>37</td>
<td>p=0.36</td>
</tr>
<tr>
<td>Skull fracture</td>
<td>108</td>
<td>77</td>
<td>31</td>
<td>p=0.62</td>
</tr>
<tr>
<td>Midline shift</td>
<td>15</td>
<td>8</td>
<td>7</td>
<td>p=0.42</td>
</tr>
<tr>
<td>Total*</td>
<td>364</td>
<td>258</td>
<td>106</td>
<td></td>
</tr>
</tbody>
</table>

*Patients may have more than one injury type (so total may exceed n=342).

Table 4 Mechanism of injury for patients with an extradural haemorrhage and subdural haemorrhage

<table>
<thead>
<tr>
<th>Mechanism of injury</th>
<th>Boys (n=46)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracranial</td>
<td>12 (34%)</td>
</tr>
<tr>
<td>Subdural</td>
<td>3 (10%)</td>
</tr>
</tbody>
</table>

*Mechanism of injury for one boy with an extradural haemorrhage was unknown.

677
behaviour among boys, such as climbing heights, and may be more lenient towards boys who refuse to use restraints while in the car.14 15 The gender differences demonstrated in relation to car restraint devices is of particular importance given that in some studies almost half of all TBI result from road collisions.9 10 Studies have demonstrated that being an unrestrained occupant, injury to the head and a young age were all associated with a more severe outcome following a road collision.11

Girls were not reported to have been injured intentionally in this study. The current study found that 4% of boys were intentionally injured and the risk is greatest for adolescent boys. The intentional injuries in this paper were assaults and unintentional injury. A Scottish study of paediatric mortality from trauma found that the incidence of assault and suicide was higher in boys. In a further paper by the same authors10 they state that intentional injury poses a greater threat to child health than any single cause of unintentional injury.

The rates of non-operable TBI (parenchymal bleeds and contusions) were similar in boys and girls. However, for operable TBI (EDH and SDH), statistical gender differences exist with boys more likely to sustain an EDH and girls more likely to have a SDH. The major mechanism for both EDH and SDH is falls and up to 50% of these significant falls occur at home. This has not been described in the literature to date.

Limitations
The current study is based on 24-month data collected in the two neurosurgical centres in Ireland. All cases that were admitted for TBI were logged and the data present a high level of completeness. Yet, for those under 17 years the number of cases is still relatively low and limits the ability to conduct statistical testing. Although the majority of the TBI cases in Ireland will be admitted to these centres, results should be interpreted with caution. The mortality rates in this study only record the deaths that occurred within the NSU. Reliable data on mortality were not available for children who were not admitted to the NSU or who were discharged from the unit and subsequently died.

CONCLUSIONS
Boys and girls are indeed different, and this is evident from infancy onwards. Boys are more likely to fall from a greater height, be assaulted, and tend to sustain other injuries. They are less likely to use protective devices. Whether or not the reason for such differences is sex stereotyping, it is clear that guardians should be guided to care for boys in the same manner as girls. This includes restricting the height to which they are allowed to climb, and ensuring that they are appropriately restrained when in vehicles.

Contributors NCC: researcher, data interpretation and primary author; MM: author; PC: database creation and statistical analysis; LME: primary researcher, data collection and data interpretation; LG: researcher, data interpretation. JPP: intellectual property for study; researcher and data interpretation. AJN: author.

Funding The Department of Health and Children in Ireland gave an unconditional grant to allow for the development of the database and data collection. They were not involved in any other steps in the research process nor in the interpretation of the results.

Competing interests None.

Ethics approval The Ethics Committee of Beaumont Hospital granted ethics approval for the study. The need for informed consent was not required as it was an observational study.

Provenance and peer review Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

REFERENCES

Are boys and girls that different? An analysis of traumatic brain injury in children

Niamh C Collins, Michal Molcho, Peter Carney, et al.

Emerg Med J 2013 30: 675-678 originally published online September 8, 2012
doi: 10.1136/emergmed-2011-200496

Updated information and services can be found at:
http://emj.bmj.com/content/30/8/675.full.html

These include:

References
This article cites 11 articles, 3 of which can be accessed free at:
http://emj.bmj.com/content/30/8/675.full.html#ref-list-1

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Open access (47 articles)
- Child health (215 articles)
- Trauma (973 articles)
- Trauma CNS / PNS (272 articles)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/