The use of continuous data versus binary data in MTC models: A case study in rheumatoid arthritis

Hdl Handle:
http://hdl.handle.net/10147/270395
Title:
The use of continuous data versus binary data in MTC models: A case study in rheumatoid arthritis
Authors:
Schmitz, Susanne; Adams, Roisin; Walsh, Cathal
Citation:
BMC Medical Research Methodology. 2012 Nov 06;12(1):167
Issue Date:
6-Nov-2012
URI:
http://dx.doi.org/10.1186/1471-2288-12-167; http://hdl.handle.net/10147/270395
Abstract:
Abstract Background Estimates of relative efficacy between alternative treatments are crucial for decision making in health care. When sufficient head to head evidence is not available Bayesian mixed treatment comparison models provide a powerful methodology to obtain such estimates. While models can be fit to a broad range of efficacy measures, this paper illustrates the advantages of using continuous outcome measures compared to binary outcome measures. Methods Using a case study in rheumatoid arthritis a Bayesian mixed treatment comparison model is fit to estimate the relative efficacy of five anti-TNF agents currently licensed in Europe. The model is fit for the continuous HAQ improvement outcome measure and a binary version thereof as well as for the binary ACR response measure and the underlying continuous effect. Results are compared regarding their power to detect differences between treatments. Results Sixteen randomized controlled trials were included for the analysis. For both analyses, based on the HAQ improvement as well as based on the ACR response, differences between treatments detected by the binary outcome measures are subsets of the differences detected by the underlying continuous effects. Conclusions The information lost when transforming continuous data into a binary response measure translates into a loss of power to detect differences between treatments in mixed treatment comparison models. Binary outcome measures are therefore less sensitive to change than continuous measures. Furthermore the choice of cut-off point to construct the binary measure also impacts the relative efficacy estimates.
Item Type:
Journal Article

Full metadata record

DC FieldValue Language
dc.contributor.authorSchmitz, Susanne-
dc.contributor.authorAdams, Roisin-
dc.contributor.authorWalsh, Cathal-
dc.date.accessioned2013-02-25T19:50:32Z-
dc.date.available2013-02-25T19:50:32Z-
dc.date.issued2012-11-06-
dc.identifier.citationBMC Medical Research Methodology. 2012 Nov 06;12(1):167-
dc.identifier.urihttp://dx.doi.org/10.1186/1471-2288-12-167-
dc.identifier.urihttp://hdl.handle.net/10147/270395-
dc.description.abstractAbstract Background Estimates of relative efficacy between alternative treatments are crucial for decision making in health care. When sufficient head to head evidence is not available Bayesian mixed treatment comparison models provide a powerful methodology to obtain such estimates. While models can be fit to a broad range of efficacy measures, this paper illustrates the advantages of using continuous outcome measures compared to binary outcome measures. Methods Using a case study in rheumatoid arthritis a Bayesian mixed treatment comparison model is fit to estimate the relative efficacy of five anti-TNF agents currently licensed in Europe. The model is fit for the continuous HAQ improvement outcome measure and a binary version thereof as well as for the binary ACR response measure and the underlying continuous effect. Results are compared regarding their power to detect differences between treatments. Results Sixteen randomized controlled trials were included for the analysis. For both analyses, based on the HAQ improvement as well as based on the ACR response, differences between treatments detected by the binary outcome measures are subsets of the differences detected by the underlying continuous effects. Conclusions The information lost when transforming continuous data into a binary response measure translates into a loss of power to detect differences between treatments in mixed treatment comparison models. Binary outcome measures are therefore less sensitive to change than continuous measures. Furthermore the choice of cut-off point to construct the binary measure also impacts the relative efficacy estimates.-
dc.titleThe use of continuous data versus binary data in MTC models: A case study in rheumatoid arthritis-
dc.typeJournal Article-
dc.language.rfc3066en-
dc.rights.holderSusanne Schmitz et al.; licensee BioMed Central Ltd.-
dc.description.statusPeer Reviewed-
dc.date.updated2013-02-20T00:10:49Z-
All Items in Lenus, The Irish Health Repository are protected by copyright, with all rights reserved, unless otherwise indicated.