Buttressing staples with cholecyst-derived extracellular matrix (CEM) reinforces staple lines in an ex vivo peristaltic inflation model.

Hdl Handle:
http://hdl.handle.net/10147/143814
Title:
Buttressing staples with cholecyst-derived extracellular matrix (CEM) reinforces staple lines in an ex vivo peristaltic inflation model.
Authors:
Burugapalli, Krishna; Chan, Jeffrey C Y; Kelly, John L; Pandit, Abhay
Affiliation:
National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.
Citation:
Buttressing staples with cholecyst-derived extracellular matrix (CEM) reinforces staple lines in an ex vivo peristaltic inflation model. 2008, 18 (11):1418-23 Obes Surg
Publisher:
Springer
Journal:
Obesity surgery
Issue Date:
Nov-2008
URI:
http://hdl.handle.net/10147/143814
DOI:
10.1007/s11695-008-9518-7
PubMed ID:
18459017
Additional Links:
http://www.springerlink.com/content/b441835q12xgq727/
Abstract:
Staple line leakage and bleeding are the most common problems associated with the use of surgical staplers for gastrointestinal resection and anastomotic procedures. These complications can be reduced by reinforcing the staple lines with buttressing materials. The current study reports the potential use of cholecyst-derived extracellular matrix (CEM) in non-crosslinked (NCEM) and crosslinked (XCEM) forms, and compares their mechanical performance with clinically available buttress materials [small intestinal submucosa (SIS) and bovine pericardium (BP)] in an ex vivo small intestine model.; Three crosslinked CEM variants (XCEM0005, XCEM001, and XCEM0033) with different degree of crosslinking were produced. An ex vivo peristaltic inflation model was established. Porcine small intestine segments were stapled on one end, using buttressed or non-buttressed surgical staplers. The opened, non-stapled ends were connected to a peristaltic pump and pressure transducer and sealed. The staple lines were then exposed to increased intraluminal pressure in a peristaltic manner. Both the leak and burst pressures of the test specimens were recorded.; The leak pressures observed for non-crosslinked NCEM (137.8 +/- 22.3 mmHg), crosslinked XCEM0005 (109.1 +/- 14.1 mmHg), XCEM001 (150.1 +/- 16.0 mmHg), XCEM0033 (98.8 +/- 10.5 mmHg) reinforced staple lines were significantly higher when compared to non-buttressed control (28.3 +/- 10.8 mmHg) and SIS (one and four layers) (62.6 +/- 11.8 and 57.6 +/- 12.3 mmHg, respectively) buttressed staple lines. NCEM and XCEM were comparable to that observed for BP buttressed staple lines (138.8 +/- 3.6 mmHg). Only specimens with reinforced staple lines were able to achieve high intraluminal pressures (ruptured at the intestinal mesentery), indicating that buttress reinforcements were able to withstand pressure higher than that of natural tissue (physiological failure).; These findings suggest that the use of CEM and XCEM as buttressing materials is associated with reinforced staple lines and increased leak pressures when compared to non-buttressed staple lines. CEM and XCEM were found to perform comparably with clinically available buttress materials in this ex vivo model.
Item Type:
Article
Language:
en
Description:
BACKGROUND: Staple line leakage and bleeding are the most common problems associated with the use of surgical staplers for gastrointestinal resection and anastomotic procedures. These complications can be reduced by reinforcing the staple lines with buttressing materials. The current study reports the potential use of cholecyst-derived extracellular matrix (CEM) in non-crosslinked (NCEM) and crosslinked (XCEM) forms, and compares their mechanical performance with clinically available buttress materials [small intestinal submucosa (SIS) and bovine pericardium (BP)] in an ex vivo small intestine model. METHODS: Three crosslinked CEM variants (XCEM0005, XCEM001, and XCEM0033) with different degree of crosslinking were produced. An ex vivo peristaltic inflation model was established. Porcine small intestine segments were stapled on one end, using buttressed or non-buttressed surgical staplers. The opened, non-stapled ends were connected to a peristaltic pump and pressure transducer and sealed. The staple lines were then exposed to increased intraluminal pressure in a peristaltic manner. Both the leak and burst pressures of the test specimens were recorded. RESULTS: The leak pressures observed for non-crosslinked NCEM (137.8 +/- 22.3 mmHg), crosslinked XCEM0005 (109.1 +/- 14.1 mmHg), XCEM001 (150.1 +/- 16.0 mmHg), XCEM0033 (98.8 +/- 10.5 mmHg) reinforced staple lines were significantly higher when compared to non-buttressed control (28.3 +/- 10.8 mmHg) and SIS (one and four layers) (62.6 +/- 11.8 and 57.6 +/- 12.3 mmHg, respectively) buttressed staple lines. NCEM and XCEM were comparable to that observed for BP buttressed staple lines (138.8 +/- 3.6 mmHg). Only specimens with reinforced staple lines were able to achieve high intraluminal pressures (ruptured at the intestinal mesentery), indicating that buttress reinforcements were able to withstand pressure higher than that of natural tissue (physiological failure). CONCLUSIONS: These findings suggest that the use of CEM and XCEM as buttressing materials is associated with reinforced staple lines and increased leak pressures when compared to non-buttressed staple lines. CEM and XCEM were found to perform comparably with clinically available buttress materials in this ex vivo model.
MeSH:
Anastomosis, Surgical; Animals; Biocompatible Materials; Compressive Strength; Extracellular Matrix; Gastric Bypass; Models, Animal; Pressure; Surgical Stapling; Sutures; Swine
ISSN:
0960-8923

Full metadata record

DC FieldValue Language
dc.contributor.authorBurugapalli, Krishnaen
dc.contributor.authorChan, Jeffrey C Yen
dc.contributor.authorKelly, John Len
dc.contributor.authorPandit, Abhayen
dc.date.accessioned2011-10-03T15:00:16Z-
dc.date.available2011-10-03T15:00:16Z-
dc.date.issued2008-11-
dc.identifier.citationButtressing staples with cholecyst-derived extracellular matrix (CEM) reinforces staple lines in an ex vivo peristaltic inflation model. 2008, 18 (11):1418-23 Obes Surgen
dc.identifier.issn0960-8923-
dc.identifier.pmid18459017-
dc.identifier.doi10.1007/s11695-008-9518-7-
dc.identifier.urihttp://hdl.handle.net/10147/143814-
dc.descriptionBACKGROUND: Staple line leakage and bleeding are the most common problems associated with the use of surgical staplers for gastrointestinal resection and anastomotic procedures. These complications can be reduced by reinforcing the staple lines with buttressing materials. The current study reports the potential use of cholecyst-derived extracellular matrix (CEM) in non-crosslinked (NCEM) and crosslinked (XCEM) forms, and compares their mechanical performance with clinically available buttress materials [small intestinal submucosa (SIS) and bovine pericardium (BP)] in an ex vivo small intestine model. METHODS: Three crosslinked CEM variants (XCEM0005, XCEM001, and XCEM0033) with different degree of crosslinking were produced. An ex vivo peristaltic inflation model was established. Porcine small intestine segments were stapled on one end, using buttressed or non-buttressed surgical staplers. The opened, non-stapled ends were connected to a peristaltic pump and pressure transducer and sealed. The staple lines were then exposed to increased intraluminal pressure in a peristaltic manner. Both the leak and burst pressures of the test specimens were recorded. RESULTS: The leak pressures observed for non-crosslinked NCEM (137.8 +/- 22.3 mmHg), crosslinked XCEM0005 (109.1 +/- 14.1 mmHg), XCEM001 (150.1 +/- 16.0 mmHg), XCEM0033 (98.8 +/- 10.5 mmHg) reinforced staple lines were significantly higher when compared to non-buttressed control (28.3 +/- 10.8 mmHg) and SIS (one and four layers) (62.6 +/- 11.8 and 57.6 +/- 12.3 mmHg, respectively) buttressed staple lines. NCEM and XCEM were comparable to that observed for BP buttressed staple lines (138.8 +/- 3.6 mmHg). Only specimens with reinforced staple lines were able to achieve high intraluminal pressures (ruptured at the intestinal mesentery), indicating that buttress reinforcements were able to withstand pressure higher than that of natural tissue (physiological failure). CONCLUSIONS: These findings suggest that the use of CEM and XCEM as buttressing materials is associated with reinforced staple lines and increased leak pressures when compared to non-buttressed staple lines. CEM and XCEM were found to perform comparably with clinically available buttress materials in this ex vivo model.en
dc.description.abstractStaple line leakage and bleeding are the most common problems associated with the use of surgical staplers for gastrointestinal resection and anastomotic procedures. These complications can be reduced by reinforcing the staple lines with buttressing materials. The current study reports the potential use of cholecyst-derived extracellular matrix (CEM) in non-crosslinked (NCEM) and crosslinked (XCEM) forms, and compares their mechanical performance with clinically available buttress materials [small intestinal submucosa (SIS) and bovine pericardium (BP)] in an ex vivo small intestine model.-
dc.description.abstractThree crosslinked CEM variants (XCEM0005, XCEM001, and XCEM0033) with different degree of crosslinking were produced. An ex vivo peristaltic inflation model was established. Porcine small intestine segments were stapled on one end, using buttressed or non-buttressed surgical staplers. The opened, non-stapled ends were connected to a peristaltic pump and pressure transducer and sealed. The staple lines were then exposed to increased intraluminal pressure in a peristaltic manner. Both the leak and burst pressures of the test specimens were recorded.-
dc.description.abstractThe leak pressures observed for non-crosslinked NCEM (137.8 +/- 22.3 mmHg), crosslinked XCEM0005 (109.1 +/- 14.1 mmHg), XCEM001 (150.1 +/- 16.0 mmHg), XCEM0033 (98.8 +/- 10.5 mmHg) reinforced staple lines were significantly higher when compared to non-buttressed control (28.3 +/- 10.8 mmHg) and SIS (one and four layers) (62.6 +/- 11.8 and 57.6 +/- 12.3 mmHg, respectively) buttressed staple lines. NCEM and XCEM were comparable to that observed for BP buttressed staple lines (138.8 +/- 3.6 mmHg). Only specimens with reinforced staple lines were able to achieve high intraluminal pressures (ruptured at the intestinal mesentery), indicating that buttress reinforcements were able to withstand pressure higher than that of natural tissue (physiological failure).-
dc.description.abstractThese findings suggest that the use of CEM and XCEM as buttressing materials is associated with reinforced staple lines and increased leak pressures when compared to non-buttressed staple lines. CEM and XCEM were found to perform comparably with clinically available buttress materials in this ex vivo model.-
dc.language.isoenen
dc.publisherSpringeren
dc.relation.urlhttp://www.springerlink.com/content/b441835q12xgq727/en
dc.subject.meshAnastomosis, Surgical-
dc.subject.meshAnimals-
dc.subject.meshBiocompatible Materials-
dc.subject.meshCompressive Strength-
dc.subject.meshExtracellular Matrix-
dc.subject.meshGastric Bypass-
dc.subject.meshModels, Animal-
dc.subject.meshPressure-
dc.subject.meshSurgical Stapling-
dc.subject.meshSutures-
dc.subject.meshSwine-
dc.titleButtressing staples with cholecyst-derived extracellular matrix (CEM) reinforces staple lines in an ex vivo peristaltic inflation model.en
dc.typeArticleen
dc.contributor.departmentNational Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.en
dc.identifier.journalObesity surgeryen
dc.description.provinceConnacht-

Related articles on PubMed

All Items in Lenus, The Irish Health Repository are protected by copyright, with all rights reserved, unless otherwise indicated.