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Abstract

Objective: Several studies have reported the existence of a subgroup of obese individuals with normal metabolic profiles. It
remains unclear what factors are responsible for this phenomenon. We proposed that adipocyte size might be a key factor
in the protection of metabolically healthy obese (MHO) individuals from the adverse effects of obesity.

Subjects: Thirty-five patients undergoing bariatric surgery were classified as MHO (n = 15) or metabolically unhealthy obese
(MUO, n = 20) according to cut-off points adapted from the International Diabetes Federation definition of the metabolic
syndrome. Median body mass index (BMI) was 48 (range 40–71).

Results: There was a moderate correlation between omental adipocyte size and subcutaneous adipocyte size (r = 0.59,
p,0.05). The MHO group had significantly lower mean omental adipocyte size (80.9610.9 mm) when compared with
metabolically unhealthy patients (100.067.6 mm, p,0.0001). Mean subcutaneous adipocyte size was similar between the
two groups (104.168.5 mm versus 107.967.1 mm). Omental, but not subcutaneous adipocyte size, correlated with the
degree of insulin resistance as measured by HOMA-IR (r = 0.73, p,0.0005), as well as other metabolic parameters including
triglyceride/HDL-cholesterol ratio and HbA1c. Twenty-eight patients consented to liver biopsy. Of these, 46% had
steatohepatitis and fibrosis. Fifty percent (including all the MHO patients) had steatosis only. Both omental and
subcutaneous adipocyte size were significantly associated with the degree of steatosis (r = 0.66, p,0.0001 and r = 0.63,
p,0.005 respectively). However, only omental adipocyte size was an independent predictor of the presence or absence of
fibrosis.

Conclusion: Metabolically healthy individuals are a distinct subgroup of the severely obese. Both subcutaneous and
omental adipocyte size correlated positively with the degree of fatty liver, but only omental adipocyte size was related to
metabolic health, and possibly progression from hepatic steatosis to fibrosis.
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Introduction

The prevalence of chronic conditions such as type 2 diabetes,

hypertension and nonalcoholic fatty liver disease (NAFLD) increases

with increasing weight. However, not all obese individuals display

the expected features of metabolic dysfunction. Up to 30% of obese

individuals are metabolically healthy, and therefore may be

protected from the increased morbidity and mortality associated

with excess weight[1,2,3]. Several papers support the concept of

metabolically healthy obese (MHO) individuals and investigate what

factors characterize this phenotype[3,4,5,6]. Stefan et al reported

that individuals with ‘benign obesity’ demonstrated a higher degree

of insulin sensitivity, lower levels of ectopic fat in liver and skeletal

muscle, as well as lower carotid artery intima-media thickness, when

compared with an insulin resistant obese group. However, waist

circumference and degree of visceral adiposity were similar between

the two groups[5].

Adipose tissue is now firmly established as an endocrine organ,

producing a variety of important steroids, cytokines and

adipokines[7,8]. The adipocyte is therefore an obvious potential

determinant of the local and systemic metabolic environment.

Over 4 decades ago, adipocyte size was shown to vary inversely

with adipocyte insulin sensitivity[9]. More recently, studies have

shown functional differences in large and small adipocytes from

the same subjects, including altered gene expression profiles[10]

and a blunting of GLUT-4 translocation in response to insulin

stimulation in larger adipocytes[11]. Adipocyte size has also been

shown to influence adipokine secretion, with increasing adipocyte

size resulting in a shift towards dominance of pro-inflammatory

adipokines[12].
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In general, metabolic disorders are associated more strongly

with visceral adiposity, rather than with subcutaneous adiposity.

Depot-related differences exist in adipocyte responses to lipolytic

and lipogenic stimuli, in adipocyte apoptosis, expression of

adipokine receptors, and secretion of adipokines[13,14,15,16].

Also, the anatomic location of visceral adipose tissue means that

fatty acids are released directly into the portal circulation and fat

accumulation in the liver has been shown to be an important

feature of the metabolic syndrome[17,18].

Few studies have focused on individuals with a body mass index

(BMI) .40, the fastest growing category of obesity[19]. The aim of

this study therefore, was to determine if adipocyte size is one of the

factors associated with the MHO phenotype in severe obesity. We

also investigated the relationship between adipocyte size and the

degree of NAFLD in these subjects.

Methods

Ethics statement
St Vincent’s University Hospital Ethics Committee approved

this study. Written informed consent was obtained from every

participant prior to the start of any research activities.

Subjects
We studied 48 consecutive, severely obese patients undergoing

bariatric surgery. All patients were attending the weight manage-

ment service for at least 1 year prior to surgery. They were weighed

monthly during this time. Patients were excluded from the study if

they had significant weight loss in the preceding 6 months (n = 4), or

if they were taking medications that could affect metabolic and/or

hepatic parameters (n = 9). We obtained blood and omental adipose

tissue samples from the remaining 35 subjects. Nineteen of the 35

subjects consented to subcutaneous adipose tissue sampling. With

regard to age, BMI, and metabolic parameters, there was no

significant difference between the group who consented to biopsy

and those who did not. Mean age was 4267 years, median weight

was 150 kgs (range 103–240), and median BMI was 48 kgm22

(range 40–71). There were 10 males and 25 females. Fifteen patients

were classified as metabolically healthy obese, based on their

metabolic profile, as detailed below. Six of the remaining 20

unhealthy patients had type 2 diabetes (DM2).

Defining metabolically healthy obese subjects
Metabolically healthy obese (MHO) subjects had no history of

cardiovascular, respiratory or metabolic diseases. They were not on

any lipid-lowering, anti-hypertensive, or hypoglycemic agents. Clinical

examination was unremarkable and thyroid status was normal.

Fasting glucose level was #5.6 mmol/L, blood pressure was #135/

85, and TGL/HDL cholesterol ratio was #1.65 (men) or #1.32

(women). These cut-off points were adapted from the International

Diabetes Federation worldwide consensus definition of the metabolic

syndrome, 2006. The plasma triglyceride/high-density lipoprotein

cholesterol concentration ratio was used as this has been shown to

provide a simple means of identifying insulin-resistant, dyslipidemic

patients who are likely to be at increased risk of cardiovascular

disease[20]. Metabolically unhealthy obese (MUO) subjects were

defined by failure to meet at least one of the criteria above.

Adipose tissue samples and determination of adipocyte
size

Approximately 10–30 gms of omental adipose tissue, or 5–

10 gms of abdominal subcutaneous adipose tissue, was obtained at

the time of bariatric surgery. A piece of this tissue was immediately

fixed in formalin, prior to paraffin mounting and preparation of

H&E slides. The remaining tissue was placed in warm DMEM-F12

medium, supplemented with 10%FCS, transported to the lab, and

processed within 1 hour. Adipocyte size was assessed by 2 methods.

Method I (n = 35): Digital photomicrographs of H&E slides

were analyzed using UTHSCA Image Tool Software (University

of Texas Health Science Center). Two individual operators

calculated the maximal diameter of 100 adjacent adipocytes from

each of 4 separate photographs. This data was transferred to an

Excel program to calculate the mean adipocyte diameter and

standard deviation for each sample. Both operators were blinded

to patients’ clinical details.

Method II (n = 10): Fresh samples of adipose tissue were

incubated in collagenase and DMEM-F12 medium (1 mg/ml

collagenase type II (Sigma C-6885)) for 60 minutes in a metabolic

shaker (60–80 strokes/min) at 37uC. The cell suspension was

filtered through a 250 mm Nitex mesh and washed 3 times in warm

medium - cells were allowed to float by gravity and the infranatant

removed using a syringe and 18 g needle, prior to adding fresh

medium, gently inverting the container each time to ensure an

even suspension. A 50 mL aliquot of the cell fraction (suspended in

medium) was diluted with 100 mL medium and 50 mL trypan blue

(0.4% in H2O). Ten mL of this solution was transferred to a

Neubauer chamber, digital photographs taken, and measurements

of mean adipocyte diameter calculated as above.

In order to ensure reproducibility of both methods, 2 operators

performed the analysis twice. The inter-individual correlation was

calculated to compare the results obtained by both individuals. The

intra-individual correlation was calculated to compare the results

obtained by the same individual repeating the measurements twice.

Liver biopsies and determination of the degree of fatty
liver

Liver biopsies were performed by the surgeon peri-operatively,

using a ‘Tru-Cut’ needle and immediately fixed in formalin.

Biopsy fragments were at least 10 mm, and contained at least 8

portal triads, in order to ensure accurate histological assessment.

Liver tissue was paraffin-embedded, stained with hematoxylin-

eosin, and with a standard panel of special stains (PAS +/2

diastase, iron, trichrome, reticulin and shikata).

The sections were then examined by a pathologist blinded to the

clinical details and the type and degree of steatosis reported. An

eyepiece graticule with a 100-point grid was inserted in the

eyepiece and the biopsy was viewed using the 10x objective. The

number of hits on fatty hepatocytes and normal hepatocytes was

counted; the process was repeated four times in each case. The

results are given as the percentage of biopsy area with fat

deposition. A diagnosis of steatohepatitis was made if there was

ballooning degeneration with Mallory’s hyaline, neutrophilic

infiltration and perisinusoidal or pericellular fibrosis[21]. Fibrosis

was assessed with the aid of the connective tissue stains trichrome

and shikata and classified as to its anatomical distribution and

stage: perisinusoidal and pericellular fibrosis, portal, periportal

fibrosis, septal, bridging fibrosis or cirrhosis.

Statistical Analyses
Data in the text and tables are presented as mean +/2 standard

deviation, or median, with the range in parentheses, as

appropriate. Student’s unpaired t-test or Mann-Whitney U tests

were used to test for differences between healthy and unhealthy

groups, and groups with and without hepatic fibrosis, as

appropriate. One-way analysis of variance (ANOVA) was used

to test for differences between healthy, unhealthy and DM2

groups. Post-hoc comparisons were assessed by Tukey HSD test.

Adipocyte Size in MHO
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Relationships between clinical and metabolic parameters and

adipocyte size were visualized by scatter plots and assessed by

Spearman rank correlation test (Spearman’s rho or r). Overall

correlation results were confirmed by subset correlation analysis of

the MHO and MUO groups to ensure that arrangement of the

groups did not artificially increase the correlation coefficient.

Scatter plots did not demonstrate distinct data groups. Direct

logistic regression was performed to assess the impact of a number

of factors on the likelihood of hepatic fibrosis.

P values ,0.05 were considered to be statistically significant.

When multiple analyses were performed on data sets, a Bonferroni

correction was used to set a higher alpha level.

Results

Measurement of adipocyte size
There was good agreement between methods I and II (Figure 1),

although the average cell diameter determined by Method I was

smaller than that obtained by Method II by a factor of

approximately 1.2. Intra-individual and inter-individual results

had correlation coefficients of 0.92 and 0.89, respectively. Further

analyses used measurements obtained by Method I.

Metabolic profile of healthy and unhealthy groups
Table 1 summarizes the clinical features of the MHO and the

MUO group. A smaller group with type 2 diabetes (DM2) was

considered separately to the MUO group. This group was slightly

older than the other groups, and predominantly female. The

MHO and MUO groups were matched for age, BMI, and gender

ratio. By design, the groups were significantly different with regard

to blood pressure, fasting blood glucose levels, and lipid profile.

Adipocyte size and metabolic status
Subcutaneous adipocytes were always larger than omental

adipocytes, with a moderate association seen between paired

samples (r = 0.59, p,0.01). Mean omental adipocyte size was

91.8613.2 mm, mean subcutaneous adipocyte size was 106.46

7.6 mm. Gender did not appear to influence mean omental

adipocyte size (male: 92.5616.6 mm, female: 91.6611.9 mm;

p = 0.81), however subcutaneous adipocyte size showed a trend

towards a higher mean value in men (male: 110.764.2 mm,

female: 104.467.9 mm; p = 0.07). Neither omental nor subcuta-

neous adipocyte size showed any correlation with age or body

mass index.

The MHO group had a significantly lower mean omental

adipocyte size (80.9610.9 mm) when compared with the MUO

group (100.067.6 mm, p,0.0001). The unhealthy patients with

DM2 appeared to have a slightly larger adipocyte size when

compared to the unhealthy group without DM2, but this did not

reach statistical significance (104.364.2 mm and 98.268.2 respec-

tively, p = 0.10). Subcutaneous adipocyte size was similar in both

healthy and unhealthy groups. (Figure 2)

Omental adipocyte size was shown to correlate strongly with the

degree of insulin resistance as measured by HOMA-IR (r = 0.73,

p,0.0005), as well as other metabolic parameters, particularly

triglyceride level (r = 0.65, p,0.0005), TGL/HDL ratio (r = 0.67,

p,0.0005) and HbA1c (r = 0.50, p,0.005). Subcutaneous adipo-

cyte size showed no correlation with any of these metabolic

parameters. (Figure 3)

Body mass index was associated with systolic blood pressure

(r = 0.54, p,0.005), but there was no association with other

metabolic parameters.

Nonalcoholic fatty liver disease (NAFLD) in patients with
BMI.40

Twenty-eight of the 35 patients consented to an intra-operative

liver biopsy. Of these 28 biopsies, one biopsy was classified as

normal (from a MHO subject). Fourteen subjects (50%) had

evidence of steatosis only. Thirteen subjects (46%) had evidence of

nonalcoholic steatohepatitis (NASH) and varying degrees of fibrosis.

None of the MHO patients had evidence of NASH or fibrosis.

The degree of steatosis present showed a linear trend across

metabolic groups. The MHO group had the lowest median degree

of steatosis [3 (0–56%)]. The MUO group without DM2 had an

intermediate degree of steatosis [47.3 (3–70%)], between the MHO

and the group with DM2 [74 (32–98%)]; p,0.005). (Table 1)

Adipocyte size and NAFLD
Omental and subcutaneous adipocyte size showed strong

correlations with the degree of hepatic steatosis (omental:

r = 0.66, p,0.0005, subcutaneous: r = 0.63, p,0.05). (Figure 3)

The mean adipocyte size of the patients with evidence of hepatic

fibrosis was 100.667.2 mm (om) and 109.6.067.2 mm (sc),

Figure 1. Adipocyte size results (micrometers) for Method I and Method II.
doi:10.1371/journal.pone.0009997.g001
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significantly larger than the mean adipocyte size of patients with

normal/fatty livers only [89.0611.1 mm (om) and 102.466.2 mm

(sc); p,0.005 (om), p,0.05 (sc)] as seen in Figure 4.

Age, body mass index, blood pressure and liver function tests

did not differ significantly between the two groups. With regard to

metabolic parameters, the group with hepatic fibrosis had trends

Table 1. Metabolically healthy obese (MHO) compared to metabolically unhealthy obese (MUO) and metabolically unhealthy
obese with type 2 diabetes (DM2).

MHO (n = 15) MUO (n = 14) DM2 (n = 6) p value

Anthropometric and metabolic profile

M = / F R 5/10 4/10 1/5

Age 40 (23–52) 42 (33–56) 46 (38–53) ns

BMI (kgs/m2) 48 (40–59) 51 (44–71) 50 (40–55) ns

Systolic BP (mmHg) 119 (100–135) 132 (105–160) 137 (130–172) ,0.05

Diastolic BP (mmHg) 76 (50–85) 81 (62–105) 83 (70–95) ns

Fasting Glucose (mmol/L) 4.9 (4.2–5.4) 5.3 (4.1–6.0) 7.6 (7.2–12.2) ,0.0005

HbA1c (%) 5.4 (4.8–5.6) 5.6 (5.2–6.2) 7.4 (5.1–10.1) ,0.05

Cholesterol (mmol/L) 4.9 (3.1–5.7) 5.7 (4–7.2) 4.9 (4–8.1) ns

Triglyceride (mmol/L) 1.2 (0.7–1.7) 1.9 (1.3–3.2) 2.1 (1.6–6.1) ,0.0005

HDL (mmol/L) 1.3 (0.9–1.8) 1.2 (0.8–1.5) 0.9 (0.8–1.7) ns

TGL/HDL ratio 0.9 (0.5–1.5) 1.6 (1.0–3.7) 2.5 (0.9–5.8) ,0.0005

Fasting Insulin (mU/mL) 13.8 (6.7–17) 24.8 (12.9–42.2) ,0.05

HOMA-IR 1.7 (0.9–2.0) 3.0 (1.6–5.6) ,0.05

Adipocyte size (mm)

Omental n = 35
10 = - 92.5 (16.6)
25 R - 91.6 (11.9)

80.9 (10.9) 98.2 (10.2) 104.3 (4.2) ,0.0001

Subcutaneous n = 19
6 = - 110.7 (4.2)
13 R - 104.4 (7.9)

104.1 (8.5)
(3 =, 4 R)

104.9 (5.0)
(2 =, 6 R)

113.2 (6.9)
(1 =, 3 R)

ns

Liver biopsy results

Normal or steatosis only 9 of 9 5 of 14 1 of 5

NASH and/or fibrosis None 9 of 14 4 of 5

Degree of steatosis (%) 3 (0–56) 47 (3–70) 74 (32–98) ,0.005

Values are expressed as median and range in parentheses, except for adipocyte size, expressed as mean +/2 standard deviation in parentheses.
doi:10.1371/journal.pone.0009997.t001

Figure 2. Adipocyte size in obese subjects grouped by metabolic profile. Metabolically healthy obese = MHO, metabolically unhealthy
obese = MUO, metabolically unhealthy obese patients with Type 2 Diabetes = DM2. Mean omental adipocyte diameter (represented by the
horizontal lines) was 80.9610.9 mm in MHO, 98.2610.2 mm in MUO, and 104.3+/24.2 mm in DM2. Mean subcutaneous diameter was 104.168.5 mm in
MHO, 104.965.0 mm in MUO, and 113.266.9 mm in DM2.
doi:10.1371/journal.pone.0009997.g002
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toward higher median TGL/HDL ratio, higher median HOMA-

IR, as well as a higher median degree of steatosis, when compared

with the normal/fatty liver only group (Figure 4). However, after

adjustment for multiple analyses, omental adipocyte size was the

only parameter that remained significantly higher in the group

with hepatic fibrosis.

Direct logistic regression was performed to assess the impact of a

number of factors on the likelihood of hepatic fibrosis being

present. The model included the independent variables age, sex,

BMI, degree of steatosis, omental adipocyte size, triglyceride to

HDL-cholesterol ratio (TGL/HDL-C) and fasting glucose [x2 (7,

n = 46) = 20.4, p,0.005]. Only adipocyte size made a unique

statistically significant contribution to the model.

Discussion

We have shown that severely obese patients with healthy

metabolic profiles have significantly smaller omental adipocytes

Figure 3. Correlations of adipocyte size with metabolic parameters. Omental adipocyte size (A, B and C) and subcutaneous adipocyte size
(D, E and F) correlated with the degree of insulin resistance as measured by HOMA-IR, the TGL/HDL ratio, and the degree of hepatic steatosis. X =
MHO, N= MUO, #= DM2
doi:10.1371/journal.pone.0009997.g003
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than equally obese patients with unhealthy metabolic profiles.

Furthermore, omental adipocyte size strongly correlated with the

degree of insulin resistance and the degree of hepatic steatosis.

Obese individuals with smaller adipocytes had no evidence of

hepatic fibrosis. Subcutaneous adipocyte size was significantly

associated with the degree of fat in the liver, but had no association

with metabolic parameters, and did not predict presence or

absence of hepatic fibrosis. Body mass index was not associated

with adipocyte size, and was also a poor indicator of metabolic

health or degree of fatty liver disease in this patient group (median

BMI 48).

Other studies have investigated the factors responsible for

protecting MHO individuals from developing co-morbidities such

as diabetes and dyslipidemia[4,5,6]. Body fat distribution is

thought to play a role in influencing the metabolic environment.

One study reported that lower amounts of visceral adipose tissue

explained 22% of the variance in insulin sensitivity between MHO

and MUO groups[4]. However, it has also been shown that while

the amount of visceral fat is a strong predictor of insulin resistance

in normal or overweight individuals, the predictive effect of

visceral fat mass is relatively weak in obese patients[5]. Obese

patients all have a significant degree of visceral adiposity. In this

patient group, the size of the omental adipocytes may be more

important than the size of the omental fat depot.

The overflow hypothesis proposes that as the size of an

adipocyte increases, it will eventually reach a limit and be unable

to store further lipid. Excess fatty acids then ‘overflow’ to ectopic

sites, including muscle and liver, leading to peripheral and hepatic

insulin resistance, respectively[22,23]. The results of our study

support this theory, suggesting that lipid overflow from hypertro-

phied subcutaneous fat cells accumulates in the omentum and

liver. Subsequent omental fat cell hypertrophy leads to more

detrimental metabolic effects, possibly because of close proximity

to hepatic and visceral immune cell populations.

In vitro work has shown that increasing adipocyte size varies

inversely with adipocyte insulin sensitivity[9]. Large adipocytes are

more likely to produce pro-inflammatory adipokines[12] and to

demonstrate increased basal and catecholamine-stimulated lipol-

ysis[24]. Large adipocytes also have altered gene expression

profiles when compared with smaller adipocytes[10]. These

studies have focused on subcutaneous adipocytes. However,

increased production of pro-inflammatory cytokines and other

adverse qualities of fat cells in vitro, may not translate to adverse

outcomes in vivo. Our study suggests that adipocyte size, in

severely obese individuals, is a strong indicator of metabolic

health, particularly when studying adipocytes from the omental

depot.

Subcutaneous adipocytes may not have a direct impact on

metabolic dysfunction, but they still may play a key role as the

initiating factor in the process of fat overflow to ectopic sites. Lonn

M et al showed that abdominal subcutaneous adipocyte size

predicted the onset of DM2 independently of body fat percentage

or waist to hip ratio in a Swedish cohort of women[25]. This work

confirmed the original finding by Weyer C et al in Pima

Indians[26]. The primary defect may be an inability of

subcutaneous adipose tissue proliferation and differentia-

tion[27,28]. In the setting of caloric excess, it may be that some

individuals have ‘healthier’ subcutaneous fat, capable of significant

hyperplastic expansion, and consequently a lesser degree of fat

overflow and omental adipocyte hypertrophy. The degree to

which subcutaneous and omental fat can expand to accommodate

excess calories may be highly variable across individuals and

degrees of body fat, perhaps determined by genetic, intrauterine or

environmental influences later in life.

In the setting of extremely obese individuals, as in our cohort,

the subcutaneous adipocytes may all have reached their maximum

expansion limit, and therefore MHO and MUO have similar

mean adipocyte size. However, MHO may have increased pre-

adipocyte and adipocyte number, and therefore overall greater

subcutaneous storage capacity. This would explain the smaller

omental adipocyte size, and consequent metabolic benefits, seen in

this group. Arner et al recently showed that total subcutaneous

adipocyte number was greatest in pronounced hyperplasia and

smallest in pronounced hypertrophy[29]. The mean BMI in this

study was 33 kg/m2 so this association may be blunted at more

extreme levels of obesity (the mean BMI of our cohort was 50

kg/m2).

We have studied abdominal subcutaneous fat in severely obese

subjects. Previous work has demonstrated morphological and

metabolic differences between abdominal, gluteal and femoral

subcutaneous adipose tissue depots[30,31,32]. However, increas-

ing body fat can also influence these differences. In one such study,

adipocyte size was shown to vary across the abdominal, gluteal

and femoral depots at normal and overweight BMI’s. Obese

individuals had similar adipocyte size at all 3 depots[31]. Lower

body subcutaneous fat may have a beneficial influence on

metabolic health but this influence may vary between normal

weight, overweight and obese individuals. Further research,

comparing the phenotypic and metabolic features of different

subcutaneous fat depots in metabolically healthy and unhealthy

obese individuals, would help to clarify the importance of

subcutaneous fat in metabolic disease. Intra-peritoneal visceral

fat can also be subdivided into omental and mesenteric fat[33],

with emerging evidence that mesenteric adipose tissue has a

distinct role in the insulin resistance of diabetes and the metabolic

syndrome[34,35,36].

Our study focuses on subjects with a median BMI of 48 kg/m2

(mean BMI 50), a group lying at the extreme end of the obesity

spectrum. The associations between subcutaneous and omental

adipocyte size and metabolic parameters may vary in normal or

overweight individuals. This could account for the differences

between our findings, and those of other studies reporting

associations between subcutaneous adipocyte size and metabolic

risk, where the mean BMI of populations studied is usually 25–

30 kg/m2 [31,37]. Another limitation of our study is that only

nineteen of the 35 subjects agreed to a subcutaneous fat biopsy.

However, correlation analysis of these 19 subjects alone (who all

underwent liver biopsy) confirms the results reported for the whole

group. Also, if we had greater numbers in our study, it would have

been preferable to analyse males and females separately. In order

to minimize gender influences we aimed to have a similar gender

ratio across the different groups (MHO and MUO have similar

gender ratios, DM2 has more females). Differences in fat cell size

between males and females have been shown to be more

prominent in peripheral subcutaneous fat sites[30]. The relation-

ship between fat cell size and lipoprotein lipase activity is similar in

males and females in abdominal fat but not gluteal fat[30]. Lastly,

catecholamine mediated leg free fatty acid release is lower in

Figure 4. Omental adipocyte size, metabolic parameters and hepatic fibrosis. A) Omental and subcutaneous adipocyte size, B) TGL/HDL
and HOMA-IR ratios and C) Age, BMI and degree of steatosis, in subjects with hepatic steatosis alone, compared with subjects with evidence of
hepatic fibrosis (** p,0.005). The data are presented as median values and inter-quartile range.
doi:10.1371/journal.pone.0009997.g004
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women than in men, whereas free fatty acid release from the upper

body depots is comparable[38]. In summary, gender-related

differences appear to be less pronounced in abdominal subcuta-

neous fat depots.

NAFLD has been described as an additional feature of the

metabolic syndrome and there is a strong link between NAFLD

and obesity. However, similar to other parameters of metabolic

health, not all obese individuals develop NAFLD. In the setting of

severe obesity, the prevalence of NAFLD ranges from 75–

85%[39]. Within our cohort, 96% of patients had NAFLD and,

48% of those patients had evidence of steatohepatitis and fibrosis.

Predicting which patient will progress from steatosis to fibrosis is

difficult, even with information provided by liver biopsy. Recent

studies indicate that the histological severity of NAFLD correlates

with the indices of the metabolic syndrome, particularly degree of

insulin resistance[40,41]. We have shown that obese individuals

with larger adipocytes are more likely to develop steatosis. Those

with larger omental adipocytes are more likely to progress to

hepatic fibrosis. This may be secondary to the association of

increased adipocyte size and insulin resistance. However, larger

adipocytes are positively correlated with adipose tissue macro-

phage number and production of pro-inflammatory cytokines

TNF-a and IL-6 in mice[42]. Omental macrophage accumulation

is also associated with the severity of fibroinflammatory liver

damage, independently of degree of insulin resistance[43,44]. In

addition, adipocyte volume was found to have a significant positive

correlation with serum TNF-a levels and soluble TNF receptors in

lean and overweight patients[45]. Finally, secretion of the pro-

inflammatory adipocytokines leptin, IL-6, IL-8, and monocyte

chemoattractant protein-1 from cultured adipocytes correlated

positively with cell size[12]. It may be that increased omental

adipocyte size is also playing a key role in the ‘second hit’ of the

‘two hit’ hypothesis for steatohepatitis[46]. Increased pro-inflam-

matory adipocytokine production, from hypertrophied omental

adipocytes and associated macrophages, may lead to a higher

likelihood of progression to fibrosis from simple fatty liver.

In summary, we demonstrate a relationship between omental

and subcutaneous adipocyte size and the degree of hepatic

steatosis, in the severely obese. Omental, but not subcutaneous,

adipocyte size was also associated with metabolic health and

presence of hepatic fibrosis. Whether this relationship is causal,

perhaps in part via the overflow hypothesis, remains to be

elucidated. Our data support the concept of the metabolically

healthy subgroup within the severely obese population, and

suggest that the size of the individual’s adipocytes is more

important than the size of the individual.
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