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Abstract

Characterization of the epigenetic profile of humans since the initial breakthrough on the human genome project has
strongly established the key role of histone modifications and DNA methylation. These dynamic elements interact to
determine the normal level of expression or methylation status of the constituent genes in the genome. Recently,
considerable evidence has been put forward to demonstrate that environmental stress implicitly alters epigenetic patterns
causing imbalance that can lead to cancer initiation. This chain of consequences has motivated attempts to computationally
model the influence of histone modification and DNA methylation in gene expression and investigate their intrinsic
interdependency. In this paper, we explore the relation between DNA methylation and transcription and characterize in
detail the histone modifications for specific DNA methylation levels using a stochastic approach.
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Introduction

The term Epigenetics (referring to any phenotypic changes caused

by non-mutational factors), was introduced by Waddington in

1940 [1]. The epigenetic layer present in living organisms controls

the expression of genes within the genome. Earlier research [2]

concentrated on the regions of Heterochromatin (densely packed

regions within the genome that correspond to the least actively

expressed genes) and Euchromatin (less densely packed regions

within the nucleus that contain most expressed genes), but

subsequently other factors in epigenetics such as DNA Methylation,

Histone Modifications and other assistive proteins such as the Polycomb

(facilitate alteration of chromatin structure affecting gene expres-

sion) were identified [3,4]. Histones are octomeric core proteins

that protect DNA, from restriction enzymes and also act as bolsters

in chromatin condensation [5]. The huge amount of genetic

information in DNA requires structural condensation inside the

nucleus, hence the DNA strand is wound around these histone

proteins, forming a unit of Nucleosome. Several of these nucleo-

somes, on further compression are densely assembled to form a

chromatin unit. Based on the density of packing, the chromatin

form regions of euchromatin or heterochromatin.

Within each human genome, the control over the gene expression

is carried out through a well-established co-ordination between DNA

‘‘methylation’’ and Histone ‘‘modifications’’ [6]. DNA methylation

refers to the modification of DNA by addition of a methyl group to

the cytosine base and is the most stable, heritable and well conserved

epigenetic change, introduced and maintained [7,8] by a family of

enzymes called DNA Methyl Transferases (DNMT) [9]. The histone

octomer contains two sets of four types (H2-A and H2-B) and (H3

and H4) of histones that pair with one another respectively and a 5th

type H1 that binds DNA to the histone for chromatin condensation

[6]. A combination of modifications (such as acetylation, methylation,

phosphorylation, ubiquitination and sumoylation), within specific

amino acids in each histone type leads to gene expression or

inactivation [10]. It has also been found recently, that these histone

modification patterns, unlike DNA methylation, are dynamic in

nature and are completely recreated during DNA replication,

transcription and cell division [6].

We do not know precisely what patterns are set during gene

expression and how these stimulate transcription by activating or

deactivating certain factors. However, work has been reported on

the significance of individual histone modifications [11,12]. In fact,

current data reflects the presence of H3 lysine 4 (H3 K4)

methylation during transcription [12]. The literature also suggests

that activation of one change leads to successive modifications of

other amino acids [13]. It is well known that the global acetylation of

histones is higher during gene transcription whereas global

methylation is more likely during suppression of transcription

[6,12]. Even though new findings with regard to the impact of

several histone modifications have been reported, inconsistency of

precise information with regard to histone modification for a

particular event is a major challenge. It is also not known how the

histone modifications are orchestrated under high DNA methyla-

tion or when there is high transcription. Despite this insufficiency,

we do know for sure that the interactions between histones and

DNA methylation are disrupted at some stage, during the onset of

cancer. An abnormal epigenetic scenario is observed in cancer cells,

which can be attributed to the dysfunction of DNA methylation

mechanisms (e.g. conditions of genes being Hyper or Hypo

Methylated) [14]. Identification of specific factors has contributed

to these circumstances but the picture is incomplete. Hence, apart

from aiding in investigation of histone modification, a computa-

tional model that mimics the working of epigenetic mechanisms

should improve understanding of events leading to malignancy.

Methods

Our goal is to build a computational model based on inter-

relations between epigenetic elements, in order to understand
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natural system behaviour under abnormal conditions, which may

lead to disease onset [15]. This calls for simplified abstraction and

incorporation of individual epigenetic events and their inter-

dependencies to predict the behaviour of histone evolution under

stipulated and controlled conditions. We start by defining

hierarchical layers of objects that resemble the natural system.

These objects contain attributes that are constantly updated

through dynamic changes redefining the objects current state after

each time step. Information in the form of possible changes or

modifications along with a probability of shift between the changes

is introduced before the model execution. Figure 1 displays a

simplified construction of our model. One has to keep in mind that

the status of epigenetic profile in the model is defined by DNA

Methylation and Histone Modifications and not the DNA and Histone

objects themselves.

Conceptualization
In our model, each object represents a natural entity (such as

histone, Nucleosome, Gene Block) in the epigenetic layer.

Consequently, the model execution starts with a a master object

that generates a chain of gene Blocks. Each gene Block has access

to its own set of DNA sequences and Histone objects (forming a

Nucleosome Unit). When it comes to Histone objects, each has a

set of tables, updated constantly in terms of the chemical

modifications that appear after each time step. Although the

objects provide a good mimic of the natural system construction,

our major focus is on simulating epigenetic events. This is done by

allowing the model to move between possible histone states,

(containing one combination of possible chemical modifications at

a time) over several time-steps, (explained in detail in the next

section) using a stochastic approach. This method as a result is

used to define the interdependencies between histone modifica-

tions, DNA methylation and transcription progress as closely to

the natural system as possible.

Evolution of Histone Modifications
To observe how modifications are handled dynamically, in

nature, information (extracted from literature [10]) on the number

and type of amino acids for each histone type is fed into the model

before the simulation. So when a given type of modification occurs

during a particular time step, the corresponding table is updated

within that Histone. This encoded information is used to define

the intrinsic interdependencies of Histone Modifications, how

these affect and are affected by the level of DNA Methylation and

their combined effect on the output parameter ‘‘Transcription’’.

Data Collection and Representation
Table 1 gives the details of the number of amino acids, their

positions (selected from the population of amino acids that form the

histones), the corresponding modification types and the possible

number of histone states generated based on the information

obtained from literature [3,6,10–12]. This information is stored in

Figure 1. Schema of the Computational Epigenetic Micro-model. Structure and layers of our computational model closely represent known
epigenetic mechanisms. The master Object is List-Block which generates a Block of genes. Contained inside each Block are the DNA and Histone
objects forming Nucleosome unit. There are 8 histone objects - pairs of H2A,H2B,H3 and H4 along with one H1 object. Each of the histone objects are
updated with the modifications over each time-step during the simulation. Hence during each time step, the model is aware of the Histone
modifications and DNA Methylation which defines the system evolution.
doi:10.1371/journal.pone.0014031.g001
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the model during each simulation as a set of conditions, which must

be satisfied (i.e. possible combinations of histone modifications that

exist in nature). To represent the amino acid modifications in

histones more conveniently, each chemical modification is encoded

as a number, (Acetylation as ‘‘1’’, Methylation as ‘‘2’’, Phosphor-

ylation as ‘‘3’’ and no modifications as ‘‘0’’). In the case of the H4

type histone (as shown in Figure 2), an example of H4 histone

‘‘state’’ has only 5 amino acids and each amino acid has a particular

modification associated with it. If the current combination of

modifications or (histone state) is ‘‘3-0-0-0-0’’ it can be interpreted as,

the first amino acid (S1) is phosphorylated and the other amino

acids (Table 1) are not modified. This process generates a large

combination of the possible states in each histone type.

Each time-step or Iteration of the model corresponds to addition

or removal of a modification group from the possible combination

of histone states. Equivalently this step resembles the action of

enzymes which are involved in chemical modification of histone

proteins. In the computational model, only one change or

modification is made at each iteration when the model moves

between the possible histone states, based on probability of shifts.

The potential shift to a ‘‘neighbouring state’’ from the current

histone state is calculated during each iteration of the model.

Probabilities of shift also provide a window of control to introduce

stress to the system so as to see how the output parameters and the

modifications fluctuate over several time-steps. When there is a

shift between states, based on the given probability, the

corresponding modification graph in each histone type is updated

with the changes. In this way, the model can keep track of the

dynamic changes easily and use these to describe the resulting

output parameters. Our model can also handle multiple additions

of the same modification in an amino acid (Mono/di/tri

acetylation, methylation or phosphorylation [10]). Although this

is invisible to the user, it is taken into account during calculation of

global modification levels in each nucleosome. The actual

transition that occurs between possible histone states is decided

randomly, unless the user wishes to input a revised probability

distribution (i.e. based on known or desired experiments). This

random function, which decides the next state, is based on a

uniform distribution, and returns the index of next random state

chosen. If further input by user is necessary during the model run,

the probable path to achieve the user desired histone state for a

specific time step is calculated by Dijkstra algorithm [16]. The

algorithm assumes each histone state to be a node and its

probability of shift to a neighboring state as an edge. (Figure 3)

H3 Modification
The possible number of amino acid modifications for H3

histone obtained from literature was prohibitively large. In

consequence these are stored in a different manner to permit

compression. A one dimensional array of size six, based on the

importance of six specific types of modifications and their

corresponding amino acids is considered. For example, given a

coded representation ‘‘4-0-0-0-0-0’’ the first position corresponds

to all Arginines that could be methylated (see Table 2). This allows

the system to choose and modify any arginine from its population.

i.e. this could be one among R2/R8/R17/R26 or all of them

together. A value ‘‘V’’ from the closed range [0,4] is chosen

randomly to show the number of arginines modified (based on a

uniform distribution random function that returns a random

amino acid and the number to be modified in each array position).

Figure 2. General representation of histone states in our model. The number of modifiable amino acids chosen for each histone type differs.
In general, each modification is encoded as a number - Acetylation as ‘‘1’’, Methylation as ‘‘2’’, Phosphorylation as ‘‘3’’ and no modifications as ‘‘0’’. The
string of numbers or the current Histone state represents the possible combination of modifications within that particular histone type.
doi:10.1371/journal.pone.0014031.g002

Table 1. Amino acid positions and modifications.

S.No.
Histone
Type

No. of
Amino acids Amino Acid & Position Corresponding Modification

No. of
States

1. H1 0 - - -

2. H2A 4 S1-R3-K5-K9 Ph-Met-Ace-Ace 16

3. H2B 10 K5-S10-K11-K12-S14-K15-K16-K20-K23-K24 Ace/Met-Ph-Ace-Ace-Ph-Ace-Ace-Ace-Met-Ace 1536

4. *H3 6 R2-T3-K4-R8-K9-S10-T11-K14-R17-K18-T22-K23-R26-K27-
S28-T32-K36-K37

Met-Ph-Met-Met-Ace/Met-Ph-Ph-Ace/Met-Met-Ace/
Met-Ph-Ace/Met-Met-Ace/Met-Ph-Ph-Ace/Met-Met

6300

5. H4 5 S1-R3-K5-K8-K12 Ph-Met-Ace-Ace-Ace/Met 48

Details of specific amino acids and their corresponding modifications in all histone types.
*- H3 has a special type of representation based on amino acid type and the corresponding modification. K - Lysine, S - Serine, T - Threonine, R - Arginine, Ace -
Acetylation, Met - Methylation, Ph - Phosphorylation.

doi:10.1371/journal.pone.0014031.t001
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In the H3 array,while the first position corresponds to methylation

of any or all arginines (V [ [0,4]), second position to threonine

phosphorylation (V [ [0,4]) and the third to serine phosphoryla-

tions (V [ [0,4]), [6,10,12], the fourth position in particular

corresponds to lysine methylation (V [ [0,2]) that could relate to

high transcription. In contrast, the fifth position relates to lysine

methylation (V [ [0,6]) that potentially encourages more DNA

methylation and position 6 (V [ [0,6]) represents acetylation

modifications that appear during transcription. As a side effect of

compression, the user cannot choose any specific amino (such as

R2 or R8 etc) to be modified during the iterations since the model

deliberately permits random choice. The details on grouping of

amino acids and the compression is given in Table 2.

Epigenetic Interdependency
Our system has a simple yet strong and well defined inter-

dependency between histone evolution, transcription rate and level

of DNA methylation inside each Block. There are 3 main

interactions in our model.

a. Histone Modifications?Transcription.

Equations 1(a), 1(b) and 1(c) define how Transcription (T) is

calculated after each time interval in our model. The user can set

the time-interval to 1, 5, 25 or 100 time-steps, since the biological

rate of change of all types of modifications is elusive. Here, the

Transcription variable is affected by the number of modifications

in all nucleosomes in a Block. The choice of an exponential

function in any application, is based on expressing an output that

depends on variables that are continuously changing. In our case,

the histone modifications are dynamic and used to define the

instantaneous state of the model at any time point of the

simulation.

Tper time-interval~PT � (( P
m

i~1
exp2Ace{1) � ( P

m

i~1
exp1{2Met))

�ð1ðaÞÞ

m = No of time-steps set by the user in a time-interval

PT = Probability of Transcription occurring (by default this value

is set to 50% or 0.5 – unbiased)

Ace~
X

Average of the no: of Acetylation Modifications

in all Histone types in 00n00 Nucleosomes �ð1ðbÞÞ

Met~
X

Average of the no: of Methylation Modifications

in all Histone types in 00n00 Nucleosomes �ð1ðcÞÞ

Here the probability of Transcription to occur is 50% (or 0.50),

which is altered by the Histone modifications, hence making the

Transcription event a function of the modifications within this

stochastic model. Also, the system ensures that if a promoter type

Block has high levels of DNA methylation, transcription is blocked

for all the gene Blocks that follow the promoter, in agreement with

the literature [3]. This step is implemented so that only the

promoter decides transcription of the genes, as occurs in nature [6].

The second interaction is:

b. Histone Modifications < DNA Methylation.

Based on information from literature, the system allows H3 and

H4 type histones alone to influence DNA methylation and vice

versa.

Figure 3. Probability of shift between a histone state and its neighbour. Only one change is possible at each time step hence each histone
state can potentially shift to only one of its specific neighbours. * = Current state. # - neighboring state. Probabilities of shift ([[0,1]) can be given by
the user initially.
doi:10.1371/journal.pone.0014031.g003

Table 2. Compression of H3 type histone.

Position in
Compressed
Array

No. of
Amino
acids

Corresponding
Modification

Amino Acids in
H3 Modified

1. 4 Methylation R2,R8,R17,R26

2. 4 Phosphorylation T3,T11,T22,T32

3. 2 Phosphorylation S10,S28

4. 2 Methylation K4,K37

5. 6 Methylation K9, K14, K18, K23, K27, K36

6. 6 Acetylation K9, K14, K18, K23, K27, K36

Details on the Compression of H3 histone states. Content of amino acids is
classified based on the significance of amino acid type and modification that
applies, into 6 groups. K - Lysine, S - Serine, T - Threonine, R - Arginine.
doi:10.1371/journal.pone.0014031.t002
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The influence of DNA methylation on direction of histone

evolution is as follows,

(i) Probability Values for histone states containing more

Acetylation Modification –

P’a-b~Pa-b=exp(2(D-k)): �ð2ðaÞÞ

(ii) Probability Values for histone states containing more

Methylation Modification –

P’a-b~Pa-b � exp(2(D-k)): �ð2ðbÞÞ

k = Mean DNA Methylation Value (set to 50% or 0.50)

a, b = current and neighbouring histone states (H3 and

H4 types) respectively.

Pa{b = Initial Probability of shift from state a to state b.

P9a{b = Probability of shift from state a to state b in the

successive iteration.

D = DNA Methylation level in initial iteration.

System ensures that probability values are maintained within

the range of 0 and 1 with the help of a scaling factor or the mean

DNA Methylation value. During each time-step, probability of

shift of every histone state (H3 and H4), is altered by DNA

Methylation level (as given in equations 2(a) and 2(b)). The user

must set the initial probability for the first iteration.

Conversely, histone states (acetylation and methylation modi-

fications) can be used to express the level of DNA methylation,

which is calculated in two ways at the start of each iteration.

1. The user can specify a value between 0 and 1, else

2. Based on the initial Histone states chosen, the system calculates

the DNA methylation value.

DNA methylation for one Block is calculated in a very simple

way in the model.

D’~D-R �A: �ð3ðaÞÞ

D9 = DNA methylation for current Iteration.

D = DNA methylation from previous Iteration.

R = Random Value ([[0,1.0]) generated by the system

and based on the uniform distribution.

A = Average of the ratios of the current level to the

maximum level possible in methylation and acetylation

modification in a Block.

The DNA methylation for the first iteration, if not provided by the

user, assumes the value of A. The model utilizes a random value

(generated from the uniform distribution) to induce a stochastic

behaviour inside the model and also connect the interactions of

histone modifications with DNA methylation. The formula 3(a) is

implemented within the system (for successive iterations) based on

a conditional probability. The system generates another random value

(based on uniform distribution) and if this value is less than 5% of

DNA methylation value (from previous iteration), the formula is

implemented. This threshold step is very important since it

controls the system evolution and does not allow all modifications

to have a uniform effect on DNA methylation. One has to note

that the transcription rate is calculated based on the time-interval

set by the user and DNA methylation values are set after each

iteration or time-step. The third type of interaction, a consequence

of the two mentioned above, is discussed in the result section.

Hence through these interdependencies in a simple manner, we

try to mimic the mechanisms that control gene expression.

Simulation Process
The steps given below explain the simulation in a simple and

concise manner.

1. Read and Store Inputs

(a) Histone Data -The possible combinations of Histone

modification as described above are read and stored in the

model. These include string of histone states and the probabilities

of shift between the states. (The possible types of modifica-

tions are given in Tables 1 and 2)

(b) User Selected Values are provided –

i. Default Parameters: Number of Blocks, number of

nucleosomes per Block and total number of iterations(or

time-steps) and time-intervals. (Figure 1)

ii. Optional Parameters: DNA methylation and histone

states preferred by the user (in which Block, nucleosome

and at what iteration/time-step)

2. Create Objects

(a) Based on the number specified, as many objects are created

– Blocks (promoters/genes/ isolator/Introns/silencer), nu-

cleosomes, nine histone types (default) and modification

tables for each histone.

3. Simulate

(a) If the user has not chosen to explore a preferred histone

state, start with zero modifications. Based on the DNA

Methylation value (either mentioned by user or calculated

based on those histone states in the current iteration), and

the probabilities of shift for each state, choose random states

for the next iteration. Simultaneously update the modifica-

tion tables based on the current state. For example if state

02002 in H4 is chosen, update Methylation tables for H4

histone.

(b) For specific time-intervals, record the transcription rate

(using equations 1(a),(b) and (c)), and after each time-step

calculate the DNA methylation value (based on the

modification tables Ð calculated as mentioned above or by

taking the value specified by the user in a desired time-step).

Also, alter the probabilities of shift based on the DNA value

from previous time-step. (using formula (2(a) and (b))

(c) Continue till maximum value of iteration is reached.

4. Store Outputs

(a) Results for the specified time interval, inside each Block –

i. Transcription rate

ii. DNA Methylation level

iii. Global Modification levels for each Block (Methyla-

tion, Phosphorylation and Acetylation)

Epigenetic Micromodel
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iv. Count of the number of times each state is visited in

all 8 histones for each nucleosome.

Assumptions
As the major focus is on histone evolution,we make a few

simplifications here to test the system reliability.

1. The model currently handles only three modifications i.e.

Acetylation, Methylation and Phosphorylation as their biolog-

ical significance is known from literature [10].

2. Although our model can handle several hundred nucleosomes

per Block (as in reality), we illustrate with only one nucleosome

per Block to track and analyze the evolution of histones over

several time-steps. This ensures that the evolution of modifi-

cations in a single nucleosome is clearly identified and changes

are demonstrated. The nucleosome number will be increased

for further investigations to improve realism.

3. Our System is initialised with ‘‘zero’’ modifications, which are

slowly increased over several iterations.(Intervention by the

user to permit input of desired histone states in any of the time

steps is currently not allowed.)

4. DNA Methylation during the first iteration for the promoter

Block was specified by the user (such as high and low conditions

of DNA methylation values as specified in results section). For

subsequent simulation, the system evolution determines the

values.

Results and Discussion

In order to investigate the system behaviour, 64 objects of Block

type with a single nucleosome per Block was implemented, and

evolution was observed over 5000 iterations. Sixteen promoters,

each of which controlled 3 subsequent genes, were added within

the chain, to form 64 Blocks. Histone states, transcription

progression, DNA methylation and global histone modification

levels for every Block were recorded every 25 iterations.

Transcription Progression
The third type of interaction in our model whose relation is

analyzed below is,

c. DNA Methylation < Transcription.

As an effect of the first two interactions mentioned above in

methods section, the model is able to efficiently simulate an inverse

relation between the components of the third interaction,

Transcription(T) and DNA Methylation as reported in the literature.

Transcription values (T[[0,1.0], represented in Figure 4), for

increasing DNA methylation levels (specified by the user, in this

case) were observed during 3 different simulation runs. Figure 4

depicts the relation and effect of Transcription on DNA

Methylation and vice versa. Here, an inverse relation between

transcription and DNA methylation levels is consistently promi-

nent. Higher transcription is observed when the DNA methylation

is 0.35 or less, while higher DNA methylation values, (w0.75)

evidently prevent any increase in transcription.This behaviour is a

reflection of the model in choosing specific histone modification

Figure 4. Average Transcription Progression derived for 16 Promoters over 5000 iterations during 3 different simulation runs. The
third type of interaction between Transcription rate and DNA methylation level (or percentage) was observed here. Transcription rate (25 time-
steps = 1 time-interval) is inversely proportional to DNA methylation level (decided by user in this case, for testing purposes).
doi:10.1371/journal.pone.0014031.g004

Epigenetic Micromodel
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over several iterations. For DNA methylation in the range 0.47 to

0.7, (hemi-methylation state), the rate of transcription is severely

affected. We believe that this observation could co-relate to how

transcription is blocked under methylation of the CpG islands

within the promoter. These findings, for the simplified model, are

broadly in agreement with the real system as reported in the

literature [6].

Histone Evolution
Here, we analyse histone modifications for only two cases, i.e.

high DNA methylation (w0.85) and low DNA methylation

(v0.15), solely for the Promoter type Block as any changes to this

Block affect the succeeding genes. These conditions are analyzed

to study biological cases such as, those which apply when an

unexpressed oncogene is activated or when a tumor suppressor

gene is inactivated.

Case 1: Histone Evolution during low DNA Methylation
For small fixed levels of DNA methylation, (refer to Figure 4)

acetylated histone states are preferentially chosen, which in turn

lead to a stable and high transcription rate. These simulations are

carried out to show how the system effectively emulates the

biological process of transcription of genes for low DNA

methylation levels. Considerable evidence from literature show

that histone types H3 and H4 are significant during transcription

and their signatures, (or constituent amino acid modifications),

determine DNA methylation and transcription levels, [6,13,17,18].

Hence we focus on tracing these evolution types alone in our model.

Figure 5 shows the average percentage preference in 16

promoters, of all possible states in H4 histone for 10 datasets.

We tested the consistency and robustness of the system by initially

assigning 10 datasets with various ‘‘probabilities of shift’’ for H4

(H4-1 and H4-2) type histone. These probabilities (of a move from

the current state to any of its neighbors) were generated randomly

by a system defined function (based on a pseudo random number

generator - Mersenne Twister, which is robust, has a large range of

period and a high order of dimensional equidistribution [19]).

Acetylated amino acids states, such as the 11th, 35th and 47th

predominated in more than 75% of the datasets i.e. states

containing acetylated amino acids such as K5, K8 and K12 (see

Table 1) were highly visited. Even when the probability for one of

the three preferred states was lowered during any test set, the

system preferred the other two states containing lysine acetylation.

Such consistent results demonstrate the ability of our model to

reproduce the presence of these modifications during transcrip-

tion, (as reported [20,21] in particular, during expression of

oncogenes).

H3 Analysis. The depiction and interpretation of H3 results

reflect the way these are addressed in the model. In each of the H3

associated figures, (Figures 6 and 7), a unit on the X-axis

represents an expansion of what the linear array of H3 histone

stands for (Amino acid, Position in H3 Array, Number,

Modification). The Y-axis gives an average percentage of

visitation of the states containing the modifications described by

each unit in the X-axis. Since the number of H3 histone states

generated, even after compression, is the largest among all histone

types (refer to Table 1), we report and analyze specific and

prominent H3 states that are significant based on the information

from literature.

H3 histone states that contain maximum lysine acetylation (refer

Table 2) such as K6 are only visited during high level of

transcription. Hence, we analyse the modifications within those

Figure 5. Evolution of H4 (H4-1 and H4-2) histone states in the 16 promoters for 10 different datasets during low DNA methylation
levels (,0.15 or 15%). H4-1 and H4-2 histone states were tested with 10 datasets of random probability values (represented by colors in the
graph).
doi:10.1371/journal.pone.0014031.g005
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states in particular. These states, contain least or no Lysine

methylation, (corresponding to position K5(0–6) in Figure 6 and in

H3 array- of amino acids K9, K14, K18, K23, K27, K36 ). Also,

in these states, phosphorylation of serines is higher, (i.e position 3

in H3 array depicts S10 and S28 phosphorylation - refer to

Table 1), as substantiated also by literature [17]. In general,

however we find that preference given to other amino acids

positions (R1, T2 and K4 series) and their corresponding

modifications is very similiar. This means that apart from serine,

other modifications could be neutral or default modification

during transcription.

Case 2: Histone Evolution during High DNA Methylation
For higher levels of DNA methylation (w0.85, Figure 8) during

the simulation, the preference is more towards choosing

methylated histone states. This biased behaviour of the system

leads to reduced transcription rate.

Figure 8 shows the average percentage occupation of H4 type

histone states for 16 promoters. The system was again tested with 10

datasets with various probabilities assigned to the histone states in

H4 (H4-1 and H4-2). The system was found to persistently occupy

methylated amino acids, states such as the 15th, 39th and 45th in

more than 8 out of 10 datasets i.e. methylation of K12 was

predominantly high. Such strong evidence, (during histone

deacetylation and methylation) of modification to a crucial lysine

position in H4, is a potential indicator of transcription repression

and initiation of DNA methylation. Figure 8 hence indicates the

possible presence of this modification during real gene repression.

Another interesting observation is the appearance of serine

phosphorylation (state 39, Figure 8 and state 35, Figure 5) which

show the importance of this specific modification during expression

or otherwise. This suggests that the modification could be present

from the time that the H4 histone complex was formed [22].

H3 Analysis. Interpretation of Figure 7 is similar to Figure 6.

We analyse specific H3 states so as to aid in comprehension of the

results. Figure 7 shows the modifications that were preferred

during high DNA Methylation (w0.85). Only states which

contained lysine methylation (amino acid positions such as K9,

K14, K18, K23, K27, K36 as in Table 2 - position K5) were

visited. Hence we analyse the preference of other modifications

within H3 states that contain Lysine methylation. Here, conversely

to Figure 6, within those states, lysine acetylation was negligible (

acetylation of K9, K14, K18, K23, K27, K36 - Table 2) as these

are preferentially methylated. This is shown by the least number of

times the system visited those states that contain Lysine

acetylation, (position K6(0–6) in Figure 7). Also, recruitment of

states containing high phosphorylated serine was low. Such

observations, on the content of lysine acetylations and serine

phosphorylations during high DNA methylation suggest that our

model can successfully reproduce results from laboratory studies

[17] and also indicate presence of other modifications as yet

unexplored in the literature.

Figure 6. Analysis of Average percentage visits of H3 histone states containing Lysine Acetylation .i.e K6 in 16 promoters after 5000
iterations (for low levels of DNA Methylation (,0.15 or 15%)). States containing Lysine acetylation are visited the most. Hence we analyse
the the average of percentage visitation of model to all other modifications (except Lysine Acetylation - K6 in Figure) during the simulation. Here
each unit in the X-axis represents an amino acid–position in H3 array–number of Amino acids–Modification possible. The Y axis elaborates on the
average percentage visitation of H3 states that contain the modification depicted in each unit of X axis.
doi:10.1371/journal.pone.0014031.g006
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Comparative Study
Figure 9 contrasts percentage visitation for H4 histone states

under high (w0.85) and low (v0.15) DNA methylation levels. As

DNA methylation controls the direction of histone evolution, the

states visited for high levels of DNA methylation are not visited for

low levels and vice versa. Standard deviations, shown as error bars,

are calculated from the results containing the number of visits for

each state. The deviation is high for less visited states and low for

highly visited states. This means that the system tolerance to initial

selection (determined by random selection using PRNG Mersenne

Twister) is also good with specific states consistently chosen over

several iterations. This consistency in predicting characteristic

histone modifications under defined DNA methylation levels,

leverages our models capability to mimic the real system to an

accurate level. Hence, we expect to obtain similar Histone patterns

under stable DNA methylation values, for corresponding exper-

imental observations.

Conclusion and Future Work
The current version of the model, has been demonstrated to be

capable of reproducing known histone modification under stipulated

DNA methylation levels, and also report unexplored modifications

such as K12 methylation (Figure 8). Preference of histone states

containing Lysine acetylation during high transcription, and

increased number of methylation modifications in H3 and H4 states

for higher values of DNA Methylation confirms this. Further analysis

of the additional modification - (phosphorylation), reveals that for H3

type histone it supports transcription (serine phosphorylation, in

Figure 6), while this simultaneously stays neutral in H4 type histone

(see Figures 5 and 8). Such results demonstrate the model capability

and its potential as a tool to simultaneously trace the evolution of

histone modifications for different histone types, and to investigate

how the epigenetic profile is affected overall. Stochastic modeling is a

powerful method to use when several factors affect the output of a

system, with applications across a wide range including the finance

sector and social networks amongst others. In our problem, the

presence of several histone modifications and their overall dynamic

interaction with DNA Methylation, form a complex system with

stochastic evolution of constituent elements, thus providing a strong

motivation for in-silico modeling. While individual results from

laboratory experiments in epigenetics and methods to analyze them,

have been reported [20–22], our model is the first of its kind to

determine the occurrence of several modifications at one time-step.

This provides a basis for further investigations of abnormal

conditions such as Cancer and other genetic disorders. Apart from

modifications within H3 and H4 type histone, we are currently

investigating H2A and H2B [22] modifications and their influence

on the model evolution and output parameters. Also, the model’s

capability to investigate influence of modifications in one histone

type compared to another is being refined. In the long term these

studies aim to establish a comprehensive model framework for

different histone changes in order to aid in understanding of how

successive events can initiate transcription or gene suppression that

ultimately influence phenotype of an organism.

While the model described is at an early stage, efforts for

improving the model sensitivity to other factors that cause

Figure 7. Analysis of Average percentage visits of H3 histone states containing Lysine Methylation i.e. K5 in 16 promoters after 5000
iterations (for high levels of DNA Methylation (,0.85 or 85%)). States containing Lysine Methylation are visited the most. Hence we analyse
the average of percentage visitation of model to all other modifications (except Lysine Methylation K5) during the simulation. Each unit in the X-axis
represents an amino acid–position in H3 array–number of Amino acids changeable–Modification. The Y axis elaborates on the average percentage
visitation of H3 states that contain the modification given on the X axis.
doi:10.1371/journal.pone.0014031.g007
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Figure 8. Evolution of H4 (H4-1 and H4-2) histone states in the 16 promoters for 10 different datasets during high DNA methylation
levels (,0.85 or 85%). H4-1 and H4-2 histone states were tested with 10 dataset of random probability values (represented by colors in the graph).
doi:10.1371/journal.pone.0014031.g008

Figure 9. A Comparison between the average (of all 20 test results obtained for H4-1 and H4-2) preferences of H4 states for high
and low DNA Methylation Levels. Error bars represent the standard deviation calculated from the total number of visits, for every H4 histone
state (occupancy) during the simulation.
doi:10.1371/journal.pone.0014031.g009
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epigenetic changes are in progress. This includes adding more

modification types such as Ubiquitination and Sumoylation, if

data to support the importance of their contributions are sufficient.

While the simple model assigns DNA methylation values based on

global histone modifications, calculations based on CG patterns in

CpG islands and other regions of the human genome (methylated

and non-methylated regions) will add further realism to the study

of epigenetic mechanisms. This expansion will accommodate the

role and influence of DNA sequences (gene coding and tandem

repeat regions), to be taken into account in addition to histone

modifications inside the model.
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