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Abstract
Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer’s
disease (AD), which has been translated into an intense, ongoing development of disease-modifying
treatments. Most new drug candidates are targeted on inhibiting amyloid β (Aβ) production and
aggregation. In drug development, it is important to co-develop biomarkers for Aβ-related
mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools
to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also
requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the
AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Aβ isoforms
(Aβ40/Aβ42), soluble APP isoforms, Aβ oligomers and β-site APP-cleaving enzyme 1 (BACE1).
This article reviews recent research advances on core candidate CSF and plasma Aβ-related
biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.
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Introduction
We face a global epidemic of Alzheimer’s disease (AD) as the world’s population ages. In
2006, the worldwide prevalence of AD was 26.6 million, and by 2050 the prevalence will
quadruple. The current worldwide cost related to dementia is approximately $160 billion
(Wimo et al., 2006). Without a significant improvement in prevention and treatment of AD,
our healthcare and socioeconomic systems will not be able to carry the financial burden of AD
in the future. However, interventions that delay disease onset or progression by only 1 year
would reduce the disease prevalence by more than 9 million cases in 2050. Effective strategies
for preventing and treating AD are therefore urgently needed before the national economies
are overwhelmed by the financial burden of this growing epidemic.

Intense research efforts over the last 3 decades have given detailed knowledge on the molecular
pathogenesis of AD. AD is a complex progressive condition with sequentially interacting
pathological cascades, including the aggregation of amyloid β (Aβ) with plaque development,
hyperphosphorylation and aggregation of tau protein with formation of tangles, together with
downstream processes such as inflammation and oxidative stress, all of which contribute to
loss of synaptic integrity, effective neural network connectivity and progressive regional
neurodegeneration (Blennow et al., 2006). Research advances from pathological,
neurochemical and genetic studies give increasing support to the “amyloid cascade
hypothesis” (Hardy and Selkoe, 2002), which states that an imbalance between the production
and clearance or degradation or clearance of Aβ in the brain is the initiating event in AD,
ultimately leading to synaptic and neuronal dysfunction and degeneration with subsequent
cognitive disturbances (Fig. 1).

These research advances have been translated into several new drug candidates with disease-
modifying potential, several of which are now evaluated in clinical trials (Wisniewski and
Konietzko, 2008). This foreshadows a new era of causal mechanistic treatment beyond
symptomatic therapy. This new type of disease-modifying drugs can be expected to be most
effective if initiated very early in the disease process, before the neurodegenerative process is
too severe. However, current diagnostic manuals, such as the DSM-IV and ICD-10, warrant
dementia, i.e., an advanced stage and severity of the disease, to make a clinical diagnosis of
AD. Thus, there is a great need for improved diagnostic tools. New research criteria for
diagnosis of AD implementing biomarkers to allow early identification have recently been
proposed (Dubois et al., 2007).

Novel concepts of disease-modifying treatment also challenge current approaches for drug
development. Drug trials on clinically diagnosed AD cases employing outcome measures based
on clinical rating scales will not be sufficient to identify an effect of the new type of drugs in
short-term and small-medium sized clinical trials. Biomarkers may speed up this process by
serving as alternative outcomes to clinical measures. More accurate outcomes may also be
achieved by enriching the population with patients with a disease-specific biomarker pattern,
thus minimizing the risk of including patients who do not suffer from AD.

Biomarkers for AD
This review is focused on biochemical markers for the amyloidogenic process in AD in
cerebrospinal fluid (CSF) and plasma. We use the term “biomarker” in a general sense to
describe any measurable neurochemical indicator that is used to assess the risk or presence of
disease. Biomarkers may facilitate the ability to reliably diagnose AD in the very early and
perhaps even pre-clinical disease stages. They may also provide objective and reliable
measures of drug safety and disease-modifying treatment efficacy in clinical drug trials in AD.
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Since the neuropathological changes of AD likely precede symptoms by years or decades, and
it may well be optimal to treat the neuropathology as early as possible, biomarkers of pre-
clinical AD are likely to play a pivotal role in the development of the next generation of
therapies.

Criteria for an ideal biomarker for AD have been proposed by a consensus group on molecular
and biochemical markers of AD (authors, 1998). The key features of an ideal AD biomarker
are that it should detect a fundamental feature of the neuropathology, and have a diagnostic
sensitivity for AD exceeding 80% together with specificity above 80% for distinguishing AD
from other dementias. It should also be reliable, reproducible, non-invasive, simple to perform,
and inexpensive. Recommended steps to establish a biomarker include confirmation by at least
two independent studies conducted by qualified investigators with the results published in peer-
reviewed journals, and validation in neuropathologically confirmed cases. Beyond these
criteria for early and accurate diagnosis, it would be especially useful if the biomarker could
track natural disease progression as well as the beneficial effect of disease-modifying therapies.

To facilitate clinical drug development for AD, it is of particular importance to be able to make
accurate diagnoses early in the disease process, and to have biochemical measures that reflect
the pharmacodynamic effects of treatment. For these reasons the National Institute on Aging
(NIA) commissioned a working group on biomarkers as part of its Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (Frank et al., 2003). A wide range of biological measures with
possible relevance to AD were considered and then classified into categories of “Feasible,
core,” “Feasible, non-core” and “Uncertain feasibility.” Feasibility was determined by the
availability of a validated assay for the biological measure in question, with properties that
included high precision and reliability of measurement, where reagents and standards were
well described. Core analytes were those judged by the group to have reasonable evidence for
association with key mechanisms of pathology implicated in AD, while non-core analytes were
felt to be less clearly connected with mechanisms of pathogenesis or neurodegeneration in AD.

Development of feasible, core biological markers of Aβ-related mechanisms
in AD

Key neuropathological hallmarks of AD are amyloid plaques and neurofibrillary tangles (Braak
and Braak, 1991; Thal et al., 2002). Amyloid plaques are relatively insoluble dense cores of
5–10 nm thick amyloid fibrils with a surrounding “halo” of dystrophic neurites, reactive
astrocytes and activated microglia. The main proteinaceous component of amyloid plaques is
the Aβ peptide. Aβ is not a single molecular entity, but rather is composed of a family of
peptides produced by proteolytic cleavage of the type I transmembrane spanning glycoprotein
Aβ precursor protein (APP) (Selkoe, 1999) (Fig. 2). Once released by proteolytic cleavage, the
Aβ peptide may exist in solution and can be detected in CSF and plasma. This makes diverse
species of Aβ peptides highly interesting and promising candidate biological markers (for
review see Blennow and Hampel, 2003; Frank et al., 2003).

The pathogenic mechanisms that allow Aβ monomers to self-associate to form oligomeric and
ultimately polymeric structures are not yet completely understood, but, as depicted
schematically in Fig. 3, it is clear that Aβ can exist as monomers, dimers, oligomers,
protofibrils, fibrils and fibrillar aggregates (Walsh and Selkoe, 2007). Moreover, the propensity
for self-association of Aβ seems to depend on the peptide’s primary sequence such that the
Aβ42 variant, which makes up less than 10% of total Aβ, is more prone to aggregate than the
more abundant Aβ40. Proposed mechanisms for Aβ-mediated “neurotoxicity” include
structural damage to the synapse, oxidative stress, altered calcium homeostasis, induction of
apoptosis, structural damage, chronic inflammation and neuronal formation of amyloid pores
(Lashuel et al., 2002;Pratico, 2002;Selkoe, 1999).
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Treatment trials with anti-amyloid drugs, such as active and passive immunization (Dodel et
al., 2003) and β- and γ-secretase inhibitors (Wolfe, 2002), in AD patients will serve as the
ultimate proof-of-concept regarding the validity of the amyloid cascade hypothesis. To this
end, results from recent trials using biomarker candidates that signal effects of drugs targeting
Aβ have been reported (Hock et al., 2003; Siemers et al., 2007). Advances in the development
of core feasible neurochemical candidate biomarkers implemented as safety measures,
enrichment and stratification variables as well as primary and secondary outcomes in clinical
trials are currently paralleled by the development of multimodal structural and functional
neuroimaging indicators (Hampel et al., 2008). These markers and technologies have been
already implemented as secondary endpoints in trials aimed at abrogating the generation and
accumulation of Aβ to make a claim for disease modification. They are currently under intense
discussion by regulatory authorities such as the US Food and Drug Administration (FDA) and
the European Medicines Agency (EMEA) (Frank et al., 2003) in an effort to revise and update
guideline documents. To be finally accepted by regulatory authorities as surrogate endpoints
in clinical trials of potential AD modifying therapies both neurochemical and imaging
biomarker candidates should respond to treatment, predict clinical response and be
compellingly related to the pathophysiological processes, such as to the Aβ-related
mechanisms of neurodegeneration in AD (Broich, 2007).

Candidate biomarkers to reflect Aβ amyloidogenic processes in AD
This section of our article aims to provide an updated concise and comprehensive review on
core candidate biomarkers with diagnostic potential and possible utility for monitoring the
effects of disease-modifying therapies for AD. These biomarker candidates include APP
isoforms, BACE1 protein level and activity, Aβ isoforms including Aβ42 and Aβ40, and
autoantibodies against Aβ.

APP isoforms in CSF
APP is an integral membrane protein with a large extracellular domain, a single transmembrane
region and a short cytoplasmic domain (Fig. 2) (Haass, 2004). The biological function of APP
remains uncertain. The γ-secretase released intracellular domain (ICD) of APP (AICD) has
been suggested to function as a transcription factor, but genes regulated by AICD have not
been unambiguously identified (Anliker and Muller, 2006). Extensive investigations using
behavioural models (Conboy et al., 2005), neuronal cultures and APP knockout mice suggest
that APP may serve as a receptor for and appears to play a role during axonal regeneration
(Chen and Tang, 2006) and as a regulator of neural activity, connectivity, plasticity and memory
(Conboy et al., 2005;Turner et al., 2003) and in the anterograde transport of vesicles along
axons (Stokin et al., 2005), although it should be noted that considerable controversy exists
regarding the last observation (Lazarov et al., 2005).

Large soluble APP (sAPP) fragments are present in CSF (Seubert et al., 1992); however, the
results from studies on CSF levels of total, α- or β-cleaved sAPP in AD have been contradictory,
ranging from an increase (Lewczuk et al., in press), to no significant change (Hock et al.,
1998; Olsson et al., 2003; Zetterberg et al., 2008) or a slight decrease (Lannfelt et al., 1995;
Palmert et al., 1990; Prior et al., 1991; Sennvik et al., 2000; Van Nostrand et al., 1992). In
therapeutic studies, the CSF level of α-sAPP may be useful as a marker of α-secretase activation
or β-secretase inhibition.

BACE1 protein level and activity in CSF
In 1999, several independent research groups published evidence demonstrating that a
significant part of the β-secretase activity originates from an integral membrane aspartyl
protease encoded by the BACE1 gene (Hussain et al., 1999; Sinha et al., 1999; Vassar et al.,
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1999; Yan et al., 1999). Studies on BACE1-knockout mice harboring FAD mutations or being
wild-type for the PS and APP genes indicate that BACE1 is indeed the major APP-cleaving
β-secretase in the brain (Laird et al., 2005; Roberds et al., 2001). Given the fact that BACE1
knockout mice have a very mild phenotype, BACE1 has been considered a promising target
for therapy. However, the recently identified role of BACE1 in myelination (Hu et al., 2006;
Willem et al., 2006) and the finding that genetic ablation of BACE1 results in Schizophrenia-
like changes (Savonenko et al., 2008) have raised some concerns about this approach.

Recently, it was discovered that BACE1 activity can be measured in CSF. A first pilot study
showed increased BACE1 activity in CSF from AD cases (Holsinger et al., 2004); this finding
is consistent with the observation that BACE1 is upregulated in the AD brain and has been
confirmed in subsequent studies, using different assay formats (Holsinger et al., 2006;
Verheijen et al., 2006; Zhong et al., 2007). Importantly, recent studies show elevated BACE1
activity and protein levels in CSF of MCI patients (Zhong et al., 2007), and BACE1 activity
in MCI cases that progress to AD with dementia (Zetterberg et al., 2008). These results suggest
that upregulation of BACE1 may be an early pathogenic factor in AD. Interestingly, increased
CSF BACE1 activity may be associated with the APOE ε4 allele in both AD and MCI subjects
(Ewers et al., 2008). Taken together these results recommend CSF BACE1 activity as a
promising potential candidate biomarker to monitor amyloidogenic APP metabolism in the
CNS.

Aβ isoforms in CSF
To date, more than 30 different studies have been published analysing the diagnostic accuracy
of the highly fibrillogenic 42 amino acid form of Aβ (Aβ42) in CSF (Blennow and Hampel,
2003). A 50% decrease in CSF Aβ42 control levels in AD patients has been found in most of
the studies. The mean sensitivity and specificity to discriminate between AD and normal aging
are both higher than 85% (Blennow, 2004). Other than in non-demented, aged individuals,
normal CSF Aβ42 is found in psychiatric disorders, such as depression, and in neurological
disorders such as Parkinson’s disease and progressive supranuclear palsy (Blennow, 2004).
However, a mild to moderate decrease in CSF Aβ42 may be found in a percentage of patients
with frontotemporal dementia and vascular dementia (Hulstaert et al., 1999; Riemenschneider
et al., 2002b; Sjogren et al., 2002; Sjogren et al., 2000), suggesting that the diagnostic
performance of CSF Aβ42 alone in the discrimination between AD and other forms of dementia
caused by different neurodegenerative mechanisms is insufficient. The reduced CSF level of
Aβ42 in AD is believed to be caused by deposition of Aβ42 in senile plaques, with lower levels
diffusing to CSF. Accordingly, studies have found a strong correlation between low Aβ42 in
CSF and high numbers of plaques in the neocortex and hippocampus (Strozyk et al., 2003) or
high retention of Pittsburgh Compound-B (PIB) in positron emission tomography (PET) scans
that directly reflect plaque pathology in the living brain (Fagan et al., 2006; Forsberg et al.,
2008). However, some studies have also found a marked reduction in CSF Aβ42 in disorders
without Aβ plaques, such as Creutzfeldt–Jakob disease (CJD) (Otto et al., 2000), amyotrophic
lateral sclerosis (Sjogren et al., 2002) and multiple system atrophy (Holmberg et al., 2003).
These findings suggest that there may be other reasons for low CSF Aβ42 in addition to
deposition of Aβ in plaques. Factors that may contribute to reduced Aβ42 levels, in addition
to deposition in senile plaques, include formation of Aβ42 oligomers that escape ELISA
detection (Stenh et al., 2005), association with other molecules that block access to epitopes
recognized by detection antibodies, e.g., binding of Aβ42 to apolipoprotein E4 or other
chaperone-like amyloid-binding proteins, such as β-trace protein (Kanekiyo et al., 2007), or
cystatin C (Sastre et al., 2004), and sequestering of Aβ42 in the plasma membrane or
intracellularly with lower levels diffusing to CSF (LaFerla et al., 2007). CSF levels of Aβ42,
especially together with total tau (t-tau) can distinguish subjects with MCI who are likely to
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progress to AD with high sensitivity, specificity and predictive values, and may even be useful
as markers for pre-clinical AD (Table 1).

CSF Aβ40 is unchanged or slightly increased in AD (Fukuyama et al., 2000; Hansson et al.,
2007; Kanai et al., 1998; Mehta et al., 2000; Shoji et al., 1998). Consequently, a decrease in
the ratio of Aβ42/Aβ40 (or increase in the ratio of Aβ40/Aβ42) in CSF has been found in AD
in several papers (Fukuyama et al., 2000; Hansson et al., 2007; Kanai et al., 1998; Mehta et
al., 2000; Shoji et al., 1998). This decrease in the ratio of Aβ42/Aβ40 seems more pronounced
than the reduction of CSF Aβ42 alone (Hansson et al., 2007; Vigo-Pelfrey et al., 1993). Of
note, some recent studies in individuals with genetically determined AD support that the ratio
of Aβ42/Aβ40 may be more important to the neurobiology of AD than the absolute level of
Aβ42 (Bentahir et al., 2006; Kumar-Singh et al., 2006).

Besides Aβ40 and Aβ42, the major products of concerted BACE1- and γ-secretase-mediated
cleavages of APP (Fig. 2), CSF contains several at least 20 truncated Aβ isoforms. The N- and
C-terminal heterogeneity of Aβ peptides in part reflects the use of alternative cleavage sites
by both BACE1 which can cleave either at Asp1 or at Glu11 and γ-secretase which can liberate
Aβ terminating at residues 38, 40, 42 and 43 (Fig. 4). In addition several of the other Aβ
isoforms detected in CSF likely arise due to partial degradation by the action of one or more
Aβ degrading enzymes found in CSF. Using urea-based sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDSPAGE) and immunoblot, it is possible to separate
several C-terminally truncated Aβ peptides in CSF, including Aβ37, Aβ38, Aβ39, Aβ40, and
Aβ42 (Wiltfang et al., 2002). In AD, elevated CSF levels of both Aβ40 and Aβ38 are found,
along with a reduction in Aβ42. Similar data have been obtained using surface-enhanced laser
desorption/ionization time-of-flight mass spectrometry (Lewczuk et al., 2003;Sergeant et al.,
2003). Other promising findings include those of different N-terminally truncated Aβ species
present in protein extracts from AD brains (Sergeant et al., 2003). Some of these fragments are
also detectable in human CSF and may be of diagnostic utility in early AD (Vanderstichele et
al., 2005). A recent study identified a set of 18 different N- and C-terminally truncated Aβ
peptides in CSF using immunoprecipitation–mass spectrometry (Portelius et al., 2006a). Their
relative abundance pattern distinguished AD from controls with an accuracy of 86% (Portelius
et al., 2006b). This technique has recently been optimized for large-scale studies by automation
and the use of isotopically labelled internal standards that reduce the coefficients of variation
for the different Aβ fragments to 5–15% (Portelius et al., 2007). Further studies on large patient
and control series are now needed to determine the diagnostic potential of Aβ fragment
signatures in CSF more precisely.

Aβ40 and Aβ42 in plasma
Many studies have examined plasma levels of Aβ in AD but the findings are contradictory
(Table 2). Some groups report high concentrations in plasma of either Aβ42 or Aβ40 in AD,
although with a broad overlap between patients and controls, whereas most groups find no
change (Irizarry, 2004). Some studies have also reported high plasma Aβ42 in non-demented
elderly people who later developed either progressive cognitive decline or AD (Mayeux et al.,
2003;Pomara et al., 2005). Contrary to these data, one recent study found an association
between high Aβ40, low Aβ42, and risk of dementia (van Oijen et al., 2006), a result that is in
general agreement with the findings from other studies, finding a weak association between
low plasma Aβ42/Aβ40 ratio and risk of future MCI or AD in a healthy, elderly population
(Graff-Radford et al., 2007). Apart from disease-related factors, the opposing data may be due
to analytical difficulties. The peptide is very hydrophobic and binds, not only to certain test
tube walls, but also to several plasma proteins, including albumin (Kuo et al., 1999) and low-
density lipoprotein receptor-related protein-1 (Sagare et al., 2007). Additionally, measurement
of soluble Aβ has been achieved using assays that cannot identify the aggregation state of the
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species detected and may under detect Aβ oligomers (Stenh et al., 2005). Both plasma protein
binding and oligomerization could mask Aβ epitopes, resulting in the measurement of only a
fraction of Aβ. This possible confounder might differ between ELISA methods, which could
explain some of the contradictory results. Moreover, the development of anti-Aβ oligomer-
specific antibodies should obviate concerns about epitope masking due to Aβ self-association
and may provide a useful system to measure Aβ oligomer levels in both CSF and plasma.
Indeed a small number of preliminary studies suggest that measurement of Aβ oligomers will
be of benefit (Georganopoulou et al., 2005;Pitschke et al., 1998). If this holds true in larger
studies one would anticipate that combining measurement of disease-linked assembly forms
(oligomers) of Aβ together with measurement of tau in CSF together with brain imaging will
provide a highly specific and sensitive means of measuring both early and incipient AD. Indeed
even in absence of structure-specific assays plasma Aβ might still be useful as a marker to
identify and monitor biochemical effects of new amyloid-targeting drugs, a hypothesis that is
supported by recent studies on γ-secretase inhibitors (Fleisher et al., 2008;Siemers et al.,
2005,2007,2006) and immunotherapy (Relkin et al., 2008).

Human antibodies against Aβ-related proteins
Work in transgenic mouse models has suggested that antibodies directed at Aβ, generated by
passive or active immunization, may help clear Aβ and reduce cognitive/mnemonic deficits
(Bard et al., 2000; Schenk et al., 2000). Although active immunization does not so far appear
viable in humans, owing to uncontrolled inflammatory responses following multiple
administrations of the immunogen, it has generated ancillary interest in the possibility that
humans may naturally develop antibodies to Aβ. However, some of these antibodies will be
in pre-formed anti-Aβ antibody complexes and the variable results obtained in different studies
may in part be explained due to use of assays that differ in their ability to detect anti-Aβ antibody
complexes. Thus, disrupting anti-Aβ antibody complexes is essential in order to accurately
measure total anti-Aβ antibody levels. A recent study employing such a strategy did indeed
find significant differences in serum antibodies to Aβ between AD and aged-matched control
subjects (Gustaw et al., 2008).

Whether such antibodies might be helpful, harmful, or neutral with respect to the development
and progression of AD remains undetermined. Likewise, it is unclear what conditions induce
formation of such antibodies, or how specific they are to AD. A plaque-killing assay to detect
the presence of anti-Aβ antibodies revealed that approximately 50% of AD and 50% of control
cases were positive (Xu and Gaskin, 1997). These findings are generally consistent with the
report of Hyman et al. (2001) who found low but detectable anti-Aβ autoantibodies in just over
50% of all patients, and modest levels in under 5% of all patients. In CSF, however,
significantly lower titers of anti-Aβ antibodies have been observed in AD compared to ND
subjects using an ELISA (Dodel et al., 2002; Du et al., 2001, 2003). Recent data from Henkel
and co-workers (2007) provide further support that IgG-Aβ complexes in CSF may be a
protective factor against AD, but their potential as biomarkers is uncertain.

Biomarkers of Aβ-related mechanisms in drug development
CSF biomarkers may be valuable in clinical trials in at least four different ways: as diagnostic
markers, for patient stratification, as safety markers and to detect and monitor biochemical
drug effects (Table 3). The first generation of MCI clinical drug trials, such as the donepzil
and vitamin E trials (Petersen et al., 2005), recruited unselected heterogeneous MCI cases,
meaning, that probably around half of the cases did not have AD-type neurodegeneration. This
may have seriously reduced the ability to identify potential efficacy of a drug candidate. There
could be reduced costs and numbers of recruited subjects in future trials that are enriched and
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stratified for MCI subjects using clinically meaningful CSF biomarkers (Hansson et al.,
2006).

Since AD is a disorder with a slow progression of symptoms, identification of a change in the
slope of deterioration due to intervention with a disease-modifying drug candidate will require
very large patient cohorts and treatment duration of several years. Small, short-term clinical
trials may be valuable to verify a biochemical effect also in patients with AD, before the
expensive and time-consuming step is taken to larger phase II or III clinical trials. A summary
of biomarkers as surrogate measures for treatment effects on Aβ-related mechanisms is
presented in Table 4.

Presently, it is uncertain how the Aβ1–42 concentration in CSF might respond to treatment
with efficacious drugs that target pathways leading to Aβ, production, fibrillization and/or
amyloidosis in man (Gilman et al., 2005; Siemers et al., 2006). Studies in transgenic mice,
however, provide evidence that reduced CSF Aβ1–42 levels are to be expected for short-term
treatment with inhibitors of γ-secretase (Lanz et al., 2003, 2004). Similar results have recently
been seen in a phase IIa study of the Aβ clearance-enhancing compound PBT2 (Lannfelt et al.,
2008). Based on longitudinal studies of conditions involving acute neuronal injury (Hesse et
al., 2001; Zetterberg et al., 2006) and data from the interrupted phase IIa AN1792 trial (Gilman
et al., 2005), t-tau should decrease towards normal levels if a treatment is successful in
inhibiting the neurodegenerative process in AD. The same may be expected for p-tau, although
there are still no studies backing this hypothesis. The usefulness of other Aβ-related
biomarkers, e.g., BACE1 activity, as biomarkers for treatment efficacy remains to be
investigated. Nevertheless, the low intra-individual variability of CSF tau proteins and Aβ42
in 6-month and 2-year studies of AD and MCI patients is an important prerequisite for the use
of these biomarkers that may reflect the effects of disease-modifying AD therapies in clinical
trials (Blennow et al., 2007; Zetterberg et al., 2007).

Besides the use of CSF biomarkers to identify and monitor the biochemical effects of a disease-
modifying drug, they may also be valuable tools for safety monitoring in trials with drugs with
potential serious side effects, such as immunotherapy. The phase IIa AN1792 trial was
interrupted since 6% of cases developed meningoencephalitis (Orgogozo et al., 2003). In
routine clinical practice, CSF analysis is the standard method to diagnose encephalitis. Typical
findings are an increase in CSF mononuclear cells together with signs of blood–brain barrier
damage and intrathecal immunoglobulin production (Table 5). CSF may thus be a valuable
tool as safety measures in this type of trials.

Limitations of animal models and cell-based research tools
Pre-clinical studies have benefited from the use of transgenic (Tg) rodents that express mutant
forms of the human APP or PS genes. In these Tg mice, plaque deposition increases with time
and defects in cognitive and synaptic function are observed (Spires and Hyman, 2005). Such
genetically engineered mice are commonly used to evaluate if a drug candidate will reduce
“Aβ burden,” i.e., the number or extent of Aβ plaques in the brain. A pioneering study showed
that immunization with Aβ1–42 in APP Tg mice reduced both Aβ burden and cognitive deficits
(Lemere et al., 2006). However, the predictive value for translating data on drug effects from
AD Tg mice to patients with AD seems to be low. In fact, there are more than 100 molecules
that reduce Aβ plaque burden in these animal models, several of which have been found to
lack any preventive effect or any clinical effect in treating patients with AD (Blennow et al.,
2006). AD Tg mice have a huge over-expression of Aβ and develop plaques much faster than
AD cases, and thus probably are much more responsive to anti- Aβ treatment than humans
with sporadic AD.
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APP transgenic mice over-expressing Aβ42 show learning and memory disruption, but do not
show a significant loss of neurons, indicating that the transgenic rodents are incomplete models
of neurodegenerative disease, and suggesting that Aβ1–42-induced memory deficits may
involve more subtle neuronal alternations leading to synaptic defects in the absence of overt
neuron loss (Jacobsen et al., 2006; Kamenetz et al., 2003). The extent to which these animal
models recapitulate the AD phenotype depends on whether AD is primarily considered a
disease of Aβ amyloid deposition that also manifests neurodegeneration, or whether it is
primarily a neurodegenerative disease that secondarily manifests Aβ amyloid deposition
(Swerdlow, 2007). These uncertainties call for caution when translating data from mice to man.

Perspectives
There is an extensive body of literature supporting the notion that analysis of Aβ42 in CSF
together with other core feasible biomarkers, including t-tau and p-tau phosphorylated at either
threonine 231 or 181, have reliably high diagnostic and predictive performance in identifying
AD, even in the early symptomatic, predementia and clinical dementia stages (Hampel et al.,
2004; Hansson et al., 2006; Zetterberg et al., 2003). Core feasible biological marker candidates
of mechanisms related to AD pathology are in an ever-maturing development process and
should inform regulatory guideline documents regarding study design and approval for novel
compounds claiming disease modification. The more general use of CSF biomarkers in clinical
practice may be justified, especially if some of the new disease-modifying treatments prove to
have a positive clinical effect. The awareness of medical progress in the population will lead
subjects with very mild or even only subtle subjective cognitive disturbances to seek medical
advice, though in many cases the symptoms will be unrelated to AD neurodegeneration.
Diagnostic tools, such as CSF biomarkers, may thus be needed to diagnose AD-spectrum
disease at a very early stage in order to select appropriate candidates for treatment.

The authors are clearly aware that besides neurochemical candidate markers, a wide range of
mostly computer-based analysis methods of structural and functional neuroimaging data hold
great promise to substantially support early detection, prediction of cognitive decline and
conversion to AD as well as mapping of effects of therapy on the brain (Hampel et al., 2008).
These emerging in vivo-imaging tools, however, are often very expensive and not widely
distributed or accessible for clinical use. Automated approaches are in the process of earlier
testing. The rate of hippocampal atrophy assessed by labor-intensive manual MR-volumetry
is currently the best MR-derived biomarker. However, other neuroimaging approaches show
promise, including fully automated, observer- and a priori hypothesis-independent MR-based
voxel- and deformation-based morphometry (VBM, DBM) (Teipel et al., 2004, 2007a), cortical
thickness analysis (Lerch et al., 2005; Teipel et al., 2009), and region-of-interest analyses of
the medial temporal lobe and the basal forebrain (Teipel et al., 2005). The application of
machine learning algorithms to fMRI data (Mourao-Miranda et al., 2005) and structural and
functional connectivity studies of altered neuronal fiber pathways organized in cognitive
networks in the AD brain (Bokde et al., 2006; Teipel et al., 2007b) using diffusion tensor
imaging, fMRI and PET, or even direct labeling of Aβ plaques with recently developed
radioligands in molecular imaging yield particularly promising perspectives.

Combination and integration of multimodal imaging, genetic and neurochemical markers is
still in its infancy; however, there are early studies combining CSF and MRI markers (Hampel
et al., 2005) or CSF pattern and regional cerebral blood flow for added value (Haense et al.,
2008; Hansson et al., 2009).

These complementary methods, among many others, need further evaluation in ongoing large-
scale multi-center initiatives, such as ADNI. Presently, there are only a few studies in which
the diagnostic accuracy and indication of the effects of new disease-modifying therapies of
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different biomarker candidates (CSF Aβ, t-tau, p-tau, MRI based region-of-interest
measurement of hippocampal and whole brain atrophy, and 11C-PIB-PET) are progressing to
an advanced stage of qualification as biomarkers with characteristic functions and directly
compared. Moreover, this dynamically developing field requires additional data on added
value, as well as cost-benefit analyses of individual and combinations of biomarkers. A
reasonable 5-year perspective is that the utility of these biomarkers will be conclusively
established and qualified in large-scale prospective and controlled multi-center trials, such as
the US and European ADNI studies as well as in ongoing population-based prospective studies
(Mueller et al., 2005). Most important, ongoing anti-amyloid drug development programs may
demonstrate the utility of core feasible CSF biomarkers in early dose-finding studies, and in
later proof-of-mechanism and concept studies. If so, it is reasonable to anticipate that such
markers will eventually allow the selection of asymptomatic individuals at very high risk for
later neurodegeneration who are therefore candidates for anti-amyloid therapy. It appears
plausible that the biomarkers (as surrogate markers or markers of mechanisms of action)
themselves will become the primary targets of therapy; that is, like in other areas of medicine
(i.e., in oncology or in cardio-vascular diseases) drug candidates may be approved for to treat
abnormal levels of the biomarker. In other words, CSF biomarkers of Aβ amyloid dysregulation
may become true surrogate markers of AD neurodegeneration.
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Fig. 1.
The amyloid cascade hypothesis. According to this hypothesis, the central event in AD
pathogenesis is an imbalance between Aβ production and clearance, with increased Aβ
production in familial AD and decreased Aβ clearance in sporadic AD. Aβ oligomers could
directly inhibit hippocampal LTP and impair synaptic function, in addition to the inflammatory
and oxidative stress caused by aggregated and deposited Aβ. Tau pathology with tangle
formation is regarded a downstream event, but may contribute to neuronal dysfunction and
cognitive symptoms.
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Fig. 2.
Proteolytic cleavages of APP (the 770 amino acid isoform). APP processing is initiated by β-
secretase after amino acid 671, which causes the secretion of the large β-sAPP molecule and
the retention of a 99 residue C-terminal fragment (β-CTF). This fragment undergoes further
cleavage by γ-secretase to release Aβ peptides terminating at residues 40 and 42, as well as
several shorter Aβ isoforms.
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Fig. 3.
Schematic model for amyloid β (Aβ) misfolding and aggregation. Soluble native protein is
misfolded and associates in the form of oligomers and other intermediates that eventually give
rise to fibrils. Potential opportunities for therapeutic intervention are shown in blue boxes.
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Fig. 4.
Degradation of amyloid β (Aβ) by proteases. The 42 amino acid Aβ sequence is shown with
the α-, β- and γ-secretase sites indicated. β′ indicates a second cleavage site of BACE1. The
major Aβ-degrading enzymes (IDE=insulin-degrading enzyme; NEP=neprilysin;
ECE=endothelin-converting enzyme; MMPs=matrix metalloproteinases; ACE=angiotensin-
converting enzyme) are also represented. For a detailed review on their respective cleavage
sites, see Andreasson et al. (2007).
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Table 3

Potential use of cerebrospinal fluid biomarkers in clinical trials.

Application Explanation Time point for use

Clinical diagnosis CSF biomarkers may be valuable in clinical trials on patients with early AD or MCI, to enrich
the patient cohort with pure AD cases

Baseline evaluation
of cases eligible for
the trial

Stratification of cases Cases with biomarker evidence of a disturbance in Aβ metabolism or deposition may show a
better effect of anti-Aβ disease-modifying drug candidates

Baseline evaluation
of cases eligible for
the trial

Safety monitoring Some cases treated with anti-Aβ drug candidates, such as Aβ immunotherapy, may have adverse
events such as meningoencephalitis or vasogenic edema.

Baseline evaluation
of cases and if a
possible adverse
event occurs

Theragnostics CSF biomarkers may provide information that the drug has an effect on the biochemistry and
pathogenic processes directly in patients with AD

Baseline evaluation
and at time-points
during the trial,
including the last
week of the trial
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Table 4

CSF biomarkers to monitor the biochemical drug effect in clinical treatment trials in Alzheimer’s disease.

Biomarker Mechanism Methodology Direction of change Comment

CNS Aβ42 Aβ42/
Aβ40 ratio

CNS Aβ metabolism ELISA (Andreasen et al., 1999a)
Luminex (Olsson et al., 2005) ELISA
(Hansson et al., 2007; Mehta et al.,
2000)

Uncertain. May
depend on both type of
drug and time-point
during treatment

CSF Aβ42 is the central
biomarker to monitor
Aβ accumulation in the
CNS

Soluble APP
isoforms (sAPPα and
sAPPβ)

CNS APP metabolism ELISA (Olsson et al., 2003) Meso-scale
(Zetterberg et al., 2008)

Change depending on
the type of drug

CSF sAPPβ may be
valuable in clinical
trials on, e.g., BACE1
inhibitors

BACE1 activity CNS APP metabolism Enzyme activity assays (Holsinger et al.,
2004; Zetterberg et al., 2008; Zhong et
al., 2007)

Change depending on
the type of drug

CSF BACE1 activity
may be a valuable
biomarker for CNS
APP metabolism in
clinical trials of
BACE1 inhibitors

T-tau Intensity of neuronal
degeneration

ELISA (Blennow et al., 1995) or
Luminex system (Olsson et al., 2005)

Decrease in CSF tau
with lower intensity of
the neuronal
degenerative process

CSF tau may be a
valuable downstream
biomarker to identify
an effect on the
neuronal degeneration

Phosphorylated tau
protein (P-tau181
and P-tau231)

Tau phosphorylation ELISA (Vanmechelen et al., 2000) or
Luminex system (Olsson et al., 2005)

Decrease in CSF P-tau
with lower tau
phosphorylation

CSF P-tau may be a
valuable downstream
biomarker to identify
an effect on the
phosphorylation state
of tau
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Table 5

CSF biomarkers for safety monitoring in clinical treatment trials in Alzheimer’s disease.

Biomarker Mechanism Methodology Direction of change Comment

CSF cell count
(mononuclear and
polynuclear cells)

Inflammatory process in
CNS

Microscopy (standard CSF cell
count)

Increased number of
mononuclear cells in
inflammatory processes in
the CNS

An increase in CSF
mononuclear cells
is an general
indicator of CNS
inflammation, such
as encephalitis

CSF/serum albumin ratio Blood–brain barrier
(BBB) dysfunction/
damage (Tibbling et al.,
1977)

Immunonephelometry Increased CSF/serum
albumin ratio in cases with
BBB damage

BBB damage is
found in
encephalitis and
other processes
affecting the brain
capillaries and
parenchyma
(including
neurodegenerative
disorders)

Intrathecal IgG and IgM
production

IgG (Tibbling et al.,
1977) and IgM (Forsberg
et al., 1984) index

Immunonephelometry Increased IgG and/or IgM
index

Intrathecal IgG/
IgM production is a
measure of CNS
inflammation
(including aseptic
encephalitis) and/or
humoral immune
response,

IgG (Blennow et al.,
1994) and IgM (Sharief et
al., 1990) oligoclonal
bands in CSF

Electrophoretic techniques Presence of IgG and/or IgM
oligoclonal bands
specifically in CSF

Total tau (T-tau) protein Neuronal damage ELISA (Blennow et al., 1995) or
Luminex system (Olsson et al.,
2005)

Increase in acute neuronal
damage (Hesse et al., 2000;
Nylen et al., 2006a; Nylen
et al., 2006b; Ost et al.,
2006; Zetterberg et al.,
2006)

CSF T-tau and NFL
are sensitive
biomarkers to
identify acute or
chronic processes
with neuronal
damage

Neurofilament light (NFL)
protein

ELISA (Rosengren et al., 1996)
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